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ABSTRACT 

Analysis of the vaporization of a spherical droplet 

in a stagnant inert atmosphere including property variations 

with temperature and pressure and surface regression is 

applied by numerical computation to the case of liquid carbon 

dioxide vaporizing in gaseous nitrogen. Ambient temperatures 

of 375-1600°K and pressures of 70-120 atmospheres were used 

in the calculations. Non-ideal effects are shown to be impor- 

tant. It is shown that for sufficiently high pressures no 

steady-state exists and that a droplet can reach and exceed 

its critical temperature by an intrinsically unsteady process. 

Comparisons are made with low density film theories and film 

theory with properties corrected for non-ideal effects. Some 

calculations of the effects of sinusoidal pressure oscillations 

on vaporization are also included. 
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SUMMARY 

A mathematical model of a s p h e r i c a l  l i q u i d  d r o p l e t  

vapor iz ing  i n  an i n e r t  gas w i t h  ambient temperatures and 

p res su res  such t h a t  t h e  d r o p l e t  may approach or  exceed i t s  

thermodynamic c r i t i ca l  temperature w a s  i n v e s t i g a t e d  by 

numerical ly  i n t e g r a t i n g  t h e  equat ions  of  change. Hydro- 

dynamic and g r a v i t a t i o n a l  e f f e c t s  are n o t  included i n  t h e  

a n a l y s i s ,  and t h e  l i q u i d  phase i s  assumed t o  have a uniform 

b u t  t i m e  d.ependent temperature. The boundary l a y e r  is thus  

s p h e r i c a l  and the  independent v a r i a b l e s  a r e  rad ia l  d i s t a n c e  

and t i m e .  Non-ideal e f f e c t s  associated w i t h  high p res su re  

mixtures ,  s o l u b i l i t y  of the  gas i n t o  the  l i q u i d  d r o p l e t ,  

v a r i a t i o n  of t h e  thermophysi@al p r o p e r t i e s  through t h e  boun- 

dary l a y e r ,  and t h e  effects of t o t a l  p re s su re  on vapor 

p re s su re  and enthalpy of vapor iza t ion  are included i n  t h e  

ana lys i s .  

Calcu la ted  vapor i za t ion  h i s tor ies  of a carbon d ioxide  

d r o p l e t  vapor iz ing  i n  a n i t rogen  atmosphere are repor ted  f o r  

ambient temperatures of 375-1600OK and ambient p re s su res  of 

70-120 atmospheres. 

The theory i n d i c a t e s  t h a t  a t  s u f f i c i e n t l y  high p res su res  

a d r o p l e t  cannot a t t a i n  s teady  state condi t ions .  By s teady  

s ta te  it i s  implied t h a t  a l l  t h e  energy t r a n s f e r r e d  to t h e  

d r o p l e t  s u r f a c e  i s  carried away e n t i r e l y  by the  m a s s  t r a n s f e r  

whi le  t h e  l i q u i d  remains a t '  a cons t an t  temperature. 
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The r e s u l t s  i n d i c a t e  t h a t  a l l  of t h e  non-ideal effects, 

h i t h e r t o  neglec ted  i n  vapor iza t ion  ana lyses ,  are important 

i n  t he  cr i t ical  region,  Furthermore, t h e  unsteady hea t ing  

up of t h e  d r o p l e t  is  m o s t  important  under high p res su re  con- 

d i t i o n s .  Under s u p e r c r i t i c a l  p re s su re  and high ambient 

temperature condi t ions  a droplet  can reach and exceed i ts  

thermodynamic c r i t i ca l  temperature,  t hus  becoming a dense 

mass of vapor, by an i n t r i n s i c a l l y  unsteady process. 

Comparisons w i t h  a l o w  p re s su re  unsteady f i l m  theory 

model are repor ted ,  The comparisons i n d i c a t e  t h a t  vaporiza- 

t i o n  t i m e s  can be estimated w i t h  reasonable  accuracy by t h i s  

low pres su re  model ove r  a w i d e  range of temperatures and 

p res su res ,  provided t h e  effects of t o t a l  p re s su re  on vapor 

p re s su re  and enthalpy of vapor iza t ion  are proper ly  taken 

i n t o  account under high d e n s i t y  condi t ions .  

The effects of superimposed gas phase s i n u s o i d a l  p re s su re  

o s c i l l a t i o n s  of r e l a t i v e l y  s m a l l  amplitude upon t h e  droplet  

vapor iza t ion  process w e r e  ca l cu la t ed .  The computations ind i -  

cate t h a t  t h e  r e l a x a t i o n  t i m e s  i n  t h e  gas phase are very sho r t  

and the  overall effect of t h e  p re s su re  o s c i l l a t i o n s  i s  n e g l i g i b l y  

s m a l l .  



ACKNOWLEDGMENTS 

The author wishes to express his deep 

and appreciation to Professors Gary L. Borman, Phillip 

S .  Myers, and Otto A. Uyehara for the inspiration, invalua- 

ble counsel and assistance he received from them. He is 

especially grateful and it is impossible for him to say 

enough in thanks for the wise advice and limitless help 

he received from Professor Gary L. Borman. 

The author wishes to express his thanks to the National 

Aeronautics and Space Administration for its financial 

support, and to Mr. Paul R. Wieber of the Lewis Research 

Center who acted as contract monitor. He is also grateful 

to the Wisconsin Alumni Research Foundation and to the 

Instituto Tecnologico y de Estudios Superiores de Monterrey 

for their partial financial support, and to the University 

of Wisconsin Computing Center for the use of its facilities. 

The author wishes to acknowledge with thanks the 

invaluable assistance received from Dean William R. Marshall 

of the University of Wisconsin Engineering Experiment Station, 

and to Dean Jose Emilio Amores and Dr. Carlos Trevino of 

the Instituto Tecnologico y de Estudios Superiores de 

Monterrey. He is indebted to the faculty members of the 

University of Wisconsin Mechanical Engineering Department, * 

iv 



V 

and wishes to express special appreciation to Professors 

Richard A. Gaggioli and John W. Mitchell. 



TABLE OF CONTENTS 

NOMENCLATURE ................................ 
LIST OF FIGUII.ES ............................. 
 INTRODUCTION............................^... 

I . STEADY STATE VAPORIZATION AT LOW AMBIENT 
P.SSUIZES ................................ 

Theoretical Model .......................... 
Applications ............................... 
Summary of Results and Assumptions ......... 

I1 . STEADY STATE VAPORIZATION AT HIGH AMBIENT 
PRESSURES.... ............................ 

Theoretical Model .......................... 
Governing Equations ...................... 
Boundary Conditions ...................... 
Equation of State.. ...................... 
Thermophysical Properties ................ 

Numerical Method of Solution ............... 
Applications to a C02-N2 System. ........... 
Comparisons with a Low Pressure Model ...... 
Concluding R.arks ......................... 

I11 . UNSTEADY DROPLET VAPORIZATION AT HIGH 
AMBIENT P.SSUIIES..'e ..................... 

Theoretical Model .......................... 
Governing Equations ...................... 

Page 

viii 

xii 

1 

5 

6 

12 

14 

i a  
19 

19 

22 

24 

25 

25 

27 

36 

38 

56 

57 

57 

Vi 



vii 

Initial Conditions ........................ 
Boundary Conditions ....................... 

Numerical Method of Solution ................ 
Applications to a C02-N2 System ............. 
Comparisons with a Low Pressure Unsteady 
Model ..................................... 

Concluding Remarks .......................... 
IV . UNSTEADY VAPORIZATION WITH PRESSURE 

OSCILLATIONS .............................. 
Theoretical Model ........................... 
Numerical Method of SoIution ................ 
Applications to a C02-N2 System ............. 

V . CONCLUSIONS ................................. 
APPENDIX A . Thermodynamic and Transport 
Properties ................................ 

APPENDIX B . Computer Programs .............. 

Page 

63 

65 

67 

75 

8 4  

89 

118 

120 

123 

124 

141 

145 

152 



NOMENCLATURE 

A, A, B, b f parameters i n  Redlich-Kwong equat ion of state 

- A, E ,  ... = v a r i a b l e s  def ined  by Equations C3.311 t o  
C3.371 

bl, b2 = cons tan t s  i n  Equation c3.661 

A '  B', ... = v a r i a b l e s  de f ined  by Equations C4.91 t o  c4.161 - ' -  
C1, C2 = cons tan t s  def ined  by Equations C1.16land 

C1.171 

C3 = cons tan t  def ined  by Equation C1.181 

C' = parameter i n  Equation CA.91 

c = molar dens i ty ,  g-mole/cm 3 

3 = molar concen t r a t ion  of component i, g-mole/cm 'i 
c = molar s p e c i f i c  h e a t ,  cal/g-moleOK 

Pi g-moleOK 

P i  g-moleOK 

cr 

P 
c = molar s p e c i f i c  hea t  of component i, cal /  

c = p a r t i a l  molal s p e c i f i c  hea t  of i, cal/  
- 

- = pseudo-reduced dens i ty  def ined  by Equation CA.221  

DAB = b ina ry  d i f f u s i v i t y  def ined  by Equation C1.91, 
2 c m  /sec 

F = func t ion  i n  Equation C2.171 

fi = fugac i ty  of component i, a t m .  

f' = frequency, Hz. 
- 
g = parameter de f ined  by Equation CA.211 

Hi = molar en tha lpy  of component i, cal/g-mole 

gi = p a r t i a l  molal en tha lpy  of component i, cal/  
g-mole 

v i i i  
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ro - 

parameter in Redlich-Kwong equation of state 
3 conversion factor, cal/atm cm 

vaporization rate constant, cm /sec 

thermal conductivity, cal/cm sec O K  

thermal conductivities in Brokaw's method 

2 

and defined by Equations EA.293 and CA.301, 
cal/cm sec O K  

mean molecular weight defined by Equation CA.271 ,  

molecular weight of component i, gm/gm-mole 

gm/g-mole 

droplet mass in molar units, g-mole 

parameter defined by Equation c4.241 

molar flux of component i with resptjct to 
stationary coordinates, g-mole/cm sec 

total pressure, atm 

average pressure, atm 

amplitude of sinusoidal pressure oscillation,atm 

pseudocritical pressure defined by Equation 
CA.261, atm 

critical pressure of component i, atm 

partial pressure of component i, atm 

vapor pressure, atm 

heat flux, cal/cm sec 

amplitude of sinusoidal heat flux oscillation, 

2 

cal/cm2 sec 

function defined by Equation CA.311 

gas constant, atm cm /g-mole OK, or cal/g-mole OK 

radial distance in spherical coordinates, cm 

droplet radius, cm 

3 



X 

r* = radial distance near edge of boundary layer, cm 

s = s  t in Equation C 
T = temperature, O K  

T = asymptotic temperature, OK 

Equation CA.251, OK 

% 

Tc = pseudocritical temperature defined by 

Tci = critical temperature of component i, O K  

Tcij = critical temperature characteristic of the 
i-j interaction, O K  

T = function defined by Equation C3.391, OK 

= steady state droplet temperature, O K  

qs 

Tss 
t = time, sec 

tv = vaporization time, sec 

Vio = velocity of component i with respect to 
stationary coordinates, cm/sec 

Viy = velocity of component i relative to the 
droplet surface, cm/sec 

v = molar volume, cm 3 /g-mole 
- = pseudocritical volume defined by Equation 
vC CA.231, cm3/g-mole 

ci 
3 v = critical volume of component i, cm /g-mole 

= critical volume characteristic of the i-j 
vci j interaction, cm3/g-mole 

w = molar vap ion rate, g-mole/sec 

= asymptoti 
= function defined by Equation C3.401 

fraction of component i xi 
x 
qs 
Y =  

y = radial distancb from droplet surface, cm 

endent variable in Equation C2.171 



x i  

= 

Greek Letter 

a =  

Y =  

A =  

- - 
'a, 'b 

i w =  

Super sc r ip t s  

J L =  

v =  

o =  

Subsc r ip t s  

A =  

radial d i s t a n  e near  edge of boun 

independent v a r i a b l e  i n  Equ 

compress ib i l i  factor, Pv/RT 

pseudocr i t i ca l  compress ib i l i t y  factor def ined  

i n d i c a t e s  d i f f e r e n t i a t i o n  wi th  r e s p e c t  t o  t i m e  

by Equation CA.241 

thermal d i f f u s i v i t y  

r a t i o  of ideal gas  s p e c i f i c  h e a t s  

l a t e n t  hea t  of vapor i za t ion ,  cal/g-mole 

cons t an t s  i n  Redlich-Kwong equat ion  of s ta te  

a c e n t r i c  factor of component i 

l i q u i d  phase 

vapor phase 

low pres su re  va lue  

spec ie s  A 

spec ie s  B 

coord ina te  po in t  i n  f i n i t e - d i f f e r e n c e  g r i d  

ambient cond i t ions  
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IPITRODUCTIOPJ 

I n  high pressure  combustion chambers, such a3 those 

encountered i n  Diesel engines  and l i q u i d  p rope l l an t  rocke t  

motors, the in f luence  of the d r o p l e t  vapor iza t ion  process 

on engine performance i s  of primary importance. 

While many i n v e s t i g a t i o n s  on s i n g l e  droplet  vapor iza t ion  

have been c a r r i e d  out  i n  the  past, r e l a t i v e l y  few have dealt 

w i t h  high pressure  cond i t ions  where the d r o p l e t s  may approach 

o r  exceed t h e i r  thermodynamic c r i t i c a l  temperature. Among 

these i n v e s t i g a t i o n s  dea l ing  wi th  high pressure  environmen- 

t a l  condi t ions,  Wieber 32* applied a low pressure  semi-empiri- 

c a l  vapor iza t ion  modell' t o  i n v e s t i g a t e  the vapor iza t ion  

process  i n  the reg ion  of the c r i t i c a l  po in t .  H e  concluded 

that a f u e l  d r o p l e t  vaporizing under high p res su re  condi t ions  

can reach  i t s  c r i t i c a l  temperature be fo re  the  vapor iza t ion  

process  i s  completed, and t h a t  small pres su re  d is turbances  

may lead t o  combustion i n s t a b i l i t y  i n  t h i s  region.  Spalding 

analyzed the unsteady combustion of s i n g l e  d r o p l e t s  under 

high pressure  cond i t ions  by using a p o i n t  source model and 

the  theory  of unsteady heat conduction. 

S p a l d i n g f s  p o i n t  source model by taking i n t o  account the 

27 

R ~ s n e r ~ ~  has modified 

* 
Super sc r ip t  numbers des igna te  r e fe rences  which are l i s t e d  
a l p h a b e t i c a l l y  by first au tho r  a t  the  end. 

1 
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f i n i t e  dimensions of t h e  droplet. The underlying assumption 

i n  References 24 and 27 is t ha t  the d r o p l e t  r a p i d l y  becomes 

a dense vapor and subsequent ly  burns l ike  an i n i t i a l l y  w e l l  

def ined  '(puff of gas". Although a number of the assumptions 

involved i n  Spaldingts p o i n t  source theo ry  and Rosnerts d i s t r i -  
I 

buted source theory  depa r t  from r e a l i t y ,  a more r e c e n t  expe r i -  

mental i n v e s t i g a t i o n  by Faeth'l on the  burning of f u e l  drop- 

lets, i n d i c a t e s  that  these models g i v e  reasonably accu ra t e  

p r e d i c t i o n s  except i n  the  e a r l y  part of the process.  Recent 

l i q u i d  temperature measurements by Dominicis9 i n d i c a t e  tha t ,  

under high enough pressure condi t ions ,  there i s  a regime where 

a l i q u i d  d r o p l e t  heats up cont inuously from i t s  i n j e c t i o n  

condi t ions  approaching or  exceeding i t s  c r i t i c a l  temperature. 

Therefore,  i t  i s  now clear that a t  high pressures a l i q u i d  

droplet may reach  i t s  c r i t i c a l  temperature becoming a dense 

vapor before  the  vapor iza t ion  process  i s  completed. 

However, previous a n a l y t i c a l  i n v e s t i g a t i o n s  have no t  

taken i n t o  account the  non-ideal e f f e c t s  a s soc ia t ed  wi th  t h e  

high pressure  condi t ions  p r e v a i l i n g  i n  a combustion chamber, 

nor the  e f f e c t s  of pressure  upon the thermophysical mixture 

properties. Thus, many of the assumptions o r d i n a r i l y  made 

i n  vapor iza t ion  s t u d i e s  have become quest ionable ,  g iv ing  rise 

t o  a need f o r  a more fundamental understanding of the  vapori-  

z a t i o n  process  i n  the reg ion  where a d r o p l e t  may reach i t s  

c r i t i c a l  temperature. 
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The p resen t  i n v e s t i g a t i o n  attempts t o  i l l u m i n a t e  the 

understanding of the  vapor iza t ion  phenomenon under high 

p res su re  cond i t ions  by means of a t h e o r e t i c a l  approach which 

makes use of t h e  equat ions  of change, inc luding  the effects 

of high pressure  mixtures  as w e l l  as t h e  e f f e c t s  of temperature 

and pressure  upon the  phys ica l  p rope r t i e s .  Such a treatment 

al though complicated by u n c e r t a i n t i e s  i n  the determinat ion 

of the  thermodynamic and t r a n s p o r t  properties of b i n a r y  

mixtures a t  high p res su res  (whose components may e x h i b i t  

anomalous behavior i n  the  v i c i n i t y  of t h e i r  c r i t i c a l  p o i n t s  

o r  the e n t i r e  mixture may behave abnormally elsewhere) never- 

theless should provide a means f o r  understanding t h e  exper i -  

mental data. Applicat ions are made to a carbon dioxide drop- 

l e t  vaporizing i n  n i t rogen  under high pressure  condi t ions.  

T h i s  s e l e c t i o n  of components was made because both  are non- 

p o l a r  and of r e l a t i v e l y  simple molecular s t r u c t u r e .  

The text  which fol lows i s  d iv ided  i n t o  fou r  s ec t ions .  

The first s e c t i o n  p resen t s  a rather simple mathematical formu- 

l a t i o n  f o r  s t eady  state d r o p l e t  vapor iza t ion  under low pres- 

s u r e  ambient condi t ions .  Although a similar t r e a t m e n t  may 

be found elsewhere i n  the l i t e ra ture21 ,  t h e  low pressure  

a n a l y s i s  i s  repeated here i n  o rde r  t o  e s t ab l i sh  the  s p e c i f i c  

areas which r e q u i r e  r e v i s i o n  i n  t he  a n a l y t i c a l  formulation 

of t h e  vapor iza t ion  process  i n  the c r i t i c a l  region.  Steady 

s ta te  droplet  vapor iza t ion  under high p res su re  condi t ions  
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i s  considered i n  the second sec t ion ,  inc luding  the non-ideal i -  

t ies p resen t  i n  the system as well as the v a r i a t i o n  of the  

phys ica l  p r o p e r t i e s  i n  the gaseous film surrounding the  drop- 

l e t .  The unsteady vapor iza t ion  process  i s  considered i n  

s e c t i o n  three by means of an  e n t i r e l y  unsteady one-dimensional 

ana lys i s .  F ina l ly ,  t he  e f f e c t s  of r e l a t i v e l y  small amplitude 

s i n u s o i d a l  pressure  o s c i l l a t i o n s  on the unsteady vapor iza t ion  

process  a t  high pres su res  are b r i e f l y  d iscussed  i n  s e c t i o n  

four .  Such per tu rba t ions  are important  i n  the a n a l y s i s  of 
rocke t  combustion i n s t a b i l i t y  models 32 . 



I. STEADY STATE VAPORIZATION AT 
LOW AMBIENT PRESSVRES 

T h i s  s tudy i s  begun by cons ider ing  a very s i m p l i f i e d  

one-dimensional model of a d r o p l e t  undergoing quasi-s teady 

vapor iza t ion  i n  an  i n e r t  low p res su re  environment. Such a 

model i s  n o t  r e a l i s t i c  at t h e  high l e v e l s  of t o t a l  p ressure  

encountered i n  the thermodynamic c r i t i c a l  region, f o r  i t  

ignores  a l l  the e f f e c t s  a s s o c i a t e d  w i t h  high pressure  mix- 

t u r e s .  

Although numerous i n v e s t i g a t i o n s  on d r o p l e t  vapor iza t ion  

a t  low pressure environmental conditions have been c a r r i e d  

out  i n  the  past and a similar t reatment  may be found 

elsewhere 3910y21, the  purpose of the low pressure  a n a l y s i s  

which fol lows is t o  establish the s p e c i f i c  areas which r equ i r e  

r e v i s i o n  i n  the a n a l y t i c a l  formulat ion of the vapor iza t ion  

process  i n  the  c r i t i c a l  region, as w e l l  as t o  i n d i c a t e  the 

salient assumptions and thus  the  i n h e r e n t  l i m i t a t i o n s  of 

the model. 

Only s t eady  state condi t ions  are considered and there- 

f o r e  the heating-up period, which p lays  an important r o l e  i n  

t h e  vapor iza t ion  process,  w i l l  be ignored. Moreover, hydro- 

dynamic and g r a v i t a t i o n a l  effects are not  included in the 

a n a l y s i s .  By s t eady  state, i t  is implied t h a t  a l l  the  energy 

5 
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a r r i v i n g  a t  the  droplet  su r face  i s  carried away e n t i r e l y  by 

the mass t r a n s f e r ,  while the l i q u i d  temperature remains a t  

a cons t an t  value determined by the ambient condi t ions  u n t i l  

the  vapor iza t ion  process  i s  completed. 

The model is first developed i n  g e n e r a l  form f o r  a 

b ina ry  system and then a p p l i c a t i o n  i s  made to t h e  vapor iza t ion  

of heptane and dodecadene d r o p l e t s  i n  a i r .  

I n  the a n a l y s i s  t ha t  fol lows s u b s c r i p t s  A and B refer 

r e s p e c t i v e l y  t o  t h e  chemical s p e c i e s  of the  l i q u i d  d r o p l e t  

and i n e r t  gaseous environment. 

Theore t i ca l  Model 

A mass balance taken on a d i f f e r e n t i a l  shel l  about  a 

s p h e r i c a l l y  symmetrical model of a quiescent  d r o p l e t  under- 

going quasi -steady vapor iza t ion  leads t o  the  fol lowing 

d i f f e r e n t i a l  equat ion 

where NA i s  t h e  molar f lux of component A with respect t o  

s t a t i o n a r y  coordinates ,  r i s  the radial d i s t a n c e  measured 

from t h e  d r o p l e t  cen ter ,  and ro I s  the droplet  r ad ius .  

Equation [1.1] i n d i c a t e s  t h a t  for t he  case of u n i d i r e c t i o n a l  

d i f fus ion ,  i .e.,  s tagnant  environment, the molar flow rate 

of species A, w = 4 m  NA, i s  cons tan t  w i th  r e s p e c t  t o  the  2 
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radial distance. 

Similarly, an energy balance on a spherical shell surroun- 

ding a droplet leads to the differential equation 

where HA is the molar enthalpy of component A in the vapor 

film and k is the thermal conductivity of the gaseous mixture. 

This relation equates the energy transferred by the mass 

motion of component A to that transferred by heat conduction. 

Viscous dissipation, emission and absorption of radiant 

energy, and the Dufour energy flux, i .e . ,  energy flux due to 

concentration gradients, are assumed to be physically 

negligible. Furthermore, it is assumed that the total pres- 

sure of the system is Constant. 

Ideal gas behavior has been assumed in the formulation 

of the energy equation, for in ideal gas mixtures there is 

a complete indifference of each component to the presence 

of others, and thus the molar enthalpy of. component A depends 

only upon temperature. Therefore, by the chain rule 

dHA - dHA dT - dT 
- m  - C p A Z  r 1 = 3 1  

where c 

pressure of component A in the ideal gas state. 

= cpA (T) is the molar specific heat at constant PA 
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Using the  above expressions and assuming cons tan t  thermal 

conduc t iv i ty  the  equat ion of energy becomes 

d2T z 11.41 

Under s t eady  state condi t ions,  a l l  the energy transferred 

t o  t h e  d r o p l e t  su r f ace  by heat conduction i s  c a r r i e d  away 

e n t i r e l y  by t h e  mass t r a n s f e r .  Hence i t  follows tha t  

a t  r = ro E 1.51 

where X =  X(T) i s  the  l a t e n t  heat of vapor iza t ion  of pure 

l i q u i d  A .  Equation [ l .5] establishes t h a t  the  energy requi red  

to evaporate  the l i q u i d  i s  no t  a f f e c t e d  by the  presence of 

component B. 

Since the ambient temperature i s  s p e c i f i e d  

The equat ion of energy, [1.4], and i t s  boundary condi t ions,  

11.51 and [1,6],can be readily i n t e g r a t e d  f o r  t h e  case  of 

cons tan t  p r o p e r t i e s  i n  terms of t h e  s t i l l  undetermined ra te  

of vaporizat ion.  

the fol lowing expression f o r  the temperature p r o f i l e  i n  t h e  

gaseous mixture surrounding the droplet i s  obtained 

After ca r ry ing  ou t  t h e  r equ i r ed  i n t e g r a t i o n ,  
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The s t eady  state l i q u i d  temperature i s  now obta ined  from 

the  above expression r ep lac ing  the radial d is tance ,  r, by 

the d r o p l e t  rad ius ,  ro. 

temperature is: 

Thus, the s t eady  state d rop le t  

Since t h e  temperature p r o f i l e  as w e l l  as the s teady  

state temperature express ions  are given i n  terms of the molar 

flow rate, i t  i s  necessary t o  determine i t  from the equat ion 

of con t inu i ty  i n  terms of thermophysical properties. 

The molar f l u x  of species A with r e spec t  t o  s t a t i o n a r y  

coord ina te s  is given by F ick t s  first l a w  f o r  o rd ina ry  d i f f u -  
2 slon in the form 

where xA i s  t h e  mole f r a c t i o n  of component A, c is the  molar 

d e n s i t y  of the mixture, and DAB i s  t h e  b ina ry  d i f f u s i v i t y .  

The above r e l a t i o n s h i p  i s  the de f in ing  equat ion f o r  DAB 

t r anspor t  of mass due t o  temperature g rad ien t s  ( t h e  Soret 

e f f e c t )  i s  assumed t o  be phys ica l ly  n e g l i g i b l e  i n  Equation 

[l.9], which states tha t  the molar f l ux  of A r e s u l t s  from 

the bulk motion of the mixture and t h e  d i f f u s i o n  superimposed 

t o  t h e  bulk flow. 

The 

Under the  assumption of u n i d i r e c t i o n a l  d i f fus ion ,  i .e.,  
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= 0, Equation [1.9] s i m p l i f i e s  t o  NB 

[ 1.101 

For i d e a l  gases the molar d e n s i t y  of the  mixture i s  

determined by the equat ion of state c = P/RT. 

by Dalton's law, the mole f r a c t i o n  of component A i n  the  mix- 

t u r e  is equal  t o  its partial pressure  d iv ided  by the total 

pressure of the  system, x = pA/P. Therefore,  in t roducing  

these s i m p l i f i c a t i o n s  the equat ion of con t inu i ty ,  [ 1.11, 

becomes 

Furthermore, 

A 

r2PDAB 
ar ( -  RT(P - PA) 

with t h e  boundary conditions of 

r = r  
0 

at - 
'A - 'v 

and 

PA = a t  r = =  

[1.11] 

where p, = pv(T) is the vapor pressure  of pure l i q u i d  A i n  

thermodynamic equi l ibr ium with i t s  vapor a t  a given temperature.  

Equation 11.121 assumes that t h e  vapor pressure  of the pure 

liquid Is n o t  a f f e c t e d  by the presence of component B i n  the 

gaseous mixture surrounding t h e  d rop le t .  

Assuming that the b i n a r y  d i f f u s i v i t y  is also cons tan t ,  

t h e  above equat ion of c o n t i n u i t y  and i t s  boundary condi t ions  

can be readily i n t e g r a t e d  t o  determine the rate of' vapor iza t ion  
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as w e l l  as the  p a r t i a l  p re s su re  prof i le  of component A i n  

the f i l m .  Carrying o u t  t he  necessary i n t e g r a t i o n ,  the follow- 

ing express ions  f o r  the  s t eady  state molar flow rate and par- 

t i a l  pressure p r o f i l e ,  r e spec t ive ly ,  are obtained:  

- k(T, - Tss) C1-14) 1 P 
In P - pv w -  

and 

-wc 
- =  PA P 1 - e x p [ c l ( e x p  4 - l)-q 

where 

PA 
wc k R x  

2 exp 7mE- 
0 - 

P D ~ ~ C p ~  

- wR 
- (TSS - ”) PA 

/ J 

[ 1.161 

[l. 171 

Hence, for some given ambient cond i t ions  and d r o p l e t  s i z e ,  

Equations f1.81 and t1.143 simultaneously determine the  

s teady  state d r o p l e t  temperature and its corresponding rate 

of vaporizat ion.  Under s t eady  state conditions the  molar 

flow rate is d i r e c t l y  p ropor t iona l  t o  the d r o p l e t  radius ,  

whereas t h e  l i q u i d  temperature depends only upon t h e  p r o p e r t i e s  

and ambient condi t ions .  

It i s  of i n t e r e s t  t o  estimate the vapor iza t ion  t i m e  spent 

by a d r o p l e t  under steady state conditions after the  governing 

equat ions  have been solved. Since the  l i q u i d  temperature i s  
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cons tan t ,  from Equation [ 1.81 

c3 
PA w c  

lFrrkr = cons tan t  = 
0 

[ 1.181 

This  may be v e r i f i e d  s i n c e  the  properties are assumed t o  be 

cons tan t  and the vapor iza t ion  rate i s  p ropor t iona l  t o  t h e  

d r o p l e t  rad ius .  Using a mass balance 

2 R dro w = - 4nrocA dt;- 

R where cA i s  the molar d e n s i t y  of t he  l i q u i d .  Thus, combining 

the above two r e l a t i o n s  and i n t e g r a t i n g  t h e  r e s u l t i n g  d i f f e r -  

e n t l a l  equation, the  vapor iza t ion  t i m e  spent  under s teady  state 

cond i t ions  i s  

tv = - 1 @pol2 
KV 

[ 1.203 

where the vapor iza t ion  ra te  constant ,  Kv, i s  def ined by 

2 w  8c3 k 
Kv=-----pc = .a 

r r rocA 'PA'A 
[ 1.211 

Equation [ 1.203 i n d i c a t e s  t h a t  the vapor iza t ion  time, 
I 

i s  d i r e c t l y  p ropor t iona l  t o  the  square of t h e  d r o p l e t  tv7 
d i  ame t e r . 

Applicat ions 

Some steady state c a l c u l a t i o n s  were performed using 



13 

heptane and dodecadene d r o p l e t s  vaporizing i n  a i r  under atmos- 

pher ic  pressure  condi t ions  f o r  var ious  va lues  of a i r  tempera- 

t u r e  i n  the  range 440-83OOK. 

obtained from References 3 and 21. The s p e c i f i c  heat a t  con- 

s t a n t  p ressure  of the f u e l  vapor, and the  b ina ry  d i f f u s i v i t y  

were eva lua ted  a t  the a r i t h m e t i c  average temperature i n  t he  

mixture.  The thermal conduc t iv i ty  of the a i r -vapor  film was 

eva lua ted  a t  the a r i t h m e t i c  average temperature i n  t he  mix- 

t u r e  and for an a i r -vapor  mixture equal t o  one-half the  con- 

c e n t r a t i o n  a t  the d r o p l e t  sur face .  

Property c o r r e l a t i o n s  were 

Figures  1.1 and 1 .2  show t y p i c a l  temperature and partial  

pressure  p r o f i l e s  i n  the film surrounding a n  arbi t rary 813- 

micron-radius heptane d r o p l e t  vaporizing i n  a i r  a t  444 and 

555OK.  

The steady s ta te  r e s u l t s  were found t o  agree wi th  the 

c a l c u l a t e d  and/or experimental  r e s u l t s  of Reference 21 which 

uses  a low pressure  semi-empirical vapor iza t ion  model . 10 

I n  o rde r  t o  determine the effect  of proper ty  v a r i a t i o n s  

i n  the  a i r -vapor  f i l m ,  v a r i a b l e  p r o p e r t i e s  were introduced 

i n  t he  equat ions  of change. The numerical s o l u t i o n  of the 

governing equat ions  i n d i c a t e d  t h a t  the  e f f e c t  is n e g l i g i b l y  

small a t  atmospheric pressure  for the temperature range inves-  

tigated. 
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Summarizing the  above ana lys i s ,  the f o l l o  

are drawn: 

The rate of vapor iza t ion  i s  d i rec t ly  propor t iona l  

t o  the d r o p l e t  r ad ius .  

The s t eady  state l iq-uid temperature does not  depend 

upon the  d r o p l e t  s i z e .  

The vapor iza t ion  t i m e  spent  under s t eady  state con- 

d i t i o n s  i s  propor t iona l  t o  the square of the d r o p l e t  

diameter. 

For the  ambient temperature range inves t iga t ed ,  the  

cons t an t  mean p r o p e r t i e s  assumption i s  a v a l i d  one 

under atmospheric p re s su re  condi t ions .  

A l is t  of the assumptions t ha t  were introduced i n  t h e  

a n a l y s i s  i s  given below: 

i. Spherical  symmetry. This  means t h a t  g r a v i t a t i o n a l  

and hydrodynamic e f f e c t s  are no t  considered. 

ii, Steady state. The heat t r a n s f e r  t o  the d r o p l e t  i s  

carried away by the  mass t r a n s f e r .  Under these 

condi t ions  the droplet remains a t  cons t an t  temperature 

u n t i l  complete vapor iza t ion  takes place.  

The i n e r t  gas surrounding the droplet i s  s t a t i o n a r y ,  

i.e., u n i d i r e c t i o n a l  d i f fus ion ,  with t h e  l i q u i d  

su r face  movement e f f e c t  on d i f f u s i o n  neglected.  

, 

iii. 
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i v .  Low pressure environmental condi t ions .  Therefore, 

the  vapor f i l m  surrounding the droplet obeys the 

equat ion of state of ideal gases. 

v. The to ta l  pressure i n  the system i s  cons tan t .  

v i .  There e x i s t s  thermodynamic equi l ibr ium a t  the d r o p l e t  

i n t e r f a c e ,  and the  pure l i qu id  vapor pressure as w e l l  

as the energy r equ i r ed  t o  evaporate  i t  are n o t  

a f f e c t e d  by the  presence of the i n e r t  environment. 

v l i .  Viscous d i s s i p a t i o n ,  r a d i a n t  energy exchange, and 

coupled e f f e c t s  a s s o c i a t e d  with t r a n s p o r t  processes,  

such as the Dufour and Sore t  effects, are assumed t o  

be p h y s i c a l l y  neg l ig ib l e .  

t h e  
PA' v i i i .  The s p e c i f i c  heat of the d i f f u s i n g  vapor, c 

binary d i f f u s i v i t y ,  DAB, and the thermal conduct iv i ty ,  

k, are cons tan t .  
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Figure 1.2. Partial pressure profiles in the film sur- 
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pressure = 1 atm. 



11. STEADY STATE VAPORIZATION AT 
HIGH AMBIENT PRESSURES 

The underlying assumptians i n  the previous vaporizat ion 

a n a l y s i s  are t h a t  ideal gas behavior i s  obeyed i n  the  gaseous 

mixture surrounding a vaporizing drople t ,  cons tan t  thermo- 

phys ica l  p roper t ies ,  and the ind i f f e rence  of the l i q u i d  

phase t o  the presence of the i n e r t  environment. Cer ta in ly  

none of these assumptions are v a l i d  under high l e v e l s  of t o t a l  

p ressure  as those encountered i n  the  c r i t i c a l  region.  

Therefore, the purpose of t h i s  s e c t i o n  i s  t o  inc lude  

i n  a quas i - s teady  ana lys i s  the e f f e c t s  of non-ideal mixtures,  

v a r i a t i o n  of the physical  p r o p e r t i e s  through the boundary 

layer, the e f f e c t  of t o t a l  p ressure  on the  vapor pressure 

and the en tha lpy  of vaporizat ion.  

T h i s  a n a l y s i s  i s  further complicated by u n c e r t a i n t i e s  

i n  the determinat ion of thermodynamic and t r a n s p o r t  p roper t ieq  

of binary  mixtures  under high pressure.  

As i n  the previous study, only steady state condi t ions 

are considered t o  s impl i fy  %he a n a l y s i s  and concentrate  on 

the non-ideal e f f e c t s .  The bas i c  r e l a t i o n s h i p s  are f i rs t  

derived for a b ina ry  system. These r e l a t i o n s h i p s  are then 

applied t o  a l i q u i d  carbon dioxide d r o p l e t  undergoing s teady  

state vaporizat ion i n  a n i t rogen  atmosphere. T h i s  s e l e c t i o n  

of components was made becaiuse both are non-polar and of 

18 
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r e l a t i v e l y  simple molecular s t r u c t u r e .  

Thermodynamic equilibrium i s  assumed a t  the l iquid-vapor  

i n t e r f a c e  when c a l c u l a t i n g  the thermophysical p r o p e r t i e s  

there. The e n t i r e  l i q u i d  d rop le t  i s  assumed t o  be a t  a uni-  

form temperature and absorp t ion  of ni t rogen  i n t o  the l i q u i d  

phase i s  assumed t o  be confined t o  a very  t h i n  l a y e r  a t  the 

d rop le t  surface.  Since vaporizat ion rates may be l a r g e  enough 

that  thermodynamic equi l ibr ium a t  the d r o p l e t  i n t e r f a c e  may 

not  be a t ta ined ,  t h i s  top ic  i s  b r i e f l y  discussed as w e l l  as 

the d i f f i c u l t i e s  encountered. 

Only u n i d i r e c t i o n a l  ord inary  d i f f u s i o n  i s  taken i n t o  

account and thus the regress ion  of the  d rop le t  su r f ace  i s  

neglected.  Viscous d i s s i p a t i o n ,  r a d i a n t  energy exchange, and 

the t r a n s p o r t  of energy due t o  concentrat ion g rad ien t s  (the 

Dufour e f f e c t )  are assumed t o  be phys ica l ly  negligible.  

I n  the a n a l y s i s  that follows, subscripts A and B r e f e r  

r e s p e c t i v e l y  t o  the chemical spec ies  of the d i f f u s i n g  vapor 

and i n e r t  environment. 

Theore t ica l  Model 

Governing Equations 

A mass balance on a s p h e r i c a l l y  symmetrical she l l  

surrounding a d r o p l e t  undergoing quas i - s teady  vaporizat ion 

leads t o  the d i f f e r e n t i a l  equat ion 

d (r2NA) = 0 9 r>ro 
dr 
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where NA is the molar flux of component A with respect to 

stationary coordinates* 

diffusion. As it will becone apparent, this assumption is 

most valid fo r  low density systems. 

under high pressure conditions may be estimated by calculating 

the ratio of molar fluxes %/NA at the droplet surface. 

actual molar flux of component B may be approximated by 

Equation c2.11 assumes unidirectional 

The error introduced 

The 

= cxg(dr,/dt). Furthermore, by continuity, the molar 
E 

NB 
flux of the diffusing vapor is NA = -cA(dro/dt). 

follows that 

Hence, it 

[ 2,. 23 

For a given value of total pressure in the system, as 
It the droplet temperature increases the density ratio, c/cA, 

increases but the concentration of component B, ( l -xA),  decreases. 

In the range of environmental conditions studied here, the flu& 

ratio varies from 5 to 17 percent. 
It should be noted that an accurate description of the 

absorption of component B into l iquid  A requires a knowledge 

of diffusion in the liquid phase. In the absence of such data 

only limiting cases are considered. 

A n  energy balance on a spherically symmetric shell 

surrounding a droplet leads to 
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where RA, the partial molal enthalpy of component A in the 
vapor f i l m ,  and k, the thermal conductivity of the mixture, 

are in general functions of temperature, pressure, and 

composition. Of course for low values of total pressure in 

the system the above equation of energy reduces toC1.21. 

Since the total pressure is essentially constant, by 

the chain rule 

and 

dk ak &A ak dT 
5 =  ?XA dr + m d r  [2* 51 

where the stoichiometric relation xA + % = 1 must be 

satisfied . 
The molar flux of component A in the gas phase is 

determined by Fickts first law for ordinary diffusion. Although 

there are many equivalent forms of Fickgs first law for binary 

systems, the form used in this work, [I.g'J,does not have 

limitations . Therefore, assuming that the molar flux of 

component B is relatively small compared to the one of A, 

16 

Introducing the above expressions the governing equations 
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of change become 

W - 
2 4 r r  k 

= o  w 8'A dxA 
2 axA d r  

- -- 
4 n r  k 

and 
2 

d r  (- 1 - CDAB xA d r  - = o  

or  i n t e g r a t i n g  Equation C2.81 
2 4 n r  cDAB 

- XA 

dxA - 2 
d r  w = 4 r r  NA = - 

C 2 . 7 1  

C 2 . 8 1  

C 2 . 9 1  

Boundary Conditions 

To determine t h e  boundary condi t ions ,  it i s  requi red  

t h a t  

x A = O  a t  r = -  c 2.101 

Furthermore, t h e  temperature of t h e  environment is  s p e c i f i e d  

as 

T = T =  a t  r = =  c 2 . 1 1 1  

The boundary condi t ions  a t  t h e  d r o p l e t  s u r f a c e  r e q u i r e  

s p e c i a l  cons idera t ion .  Assuming s m a l l  depa r tu re s  from e q u i l i -  

m a t  t h e  interface,  t h e  concent ra t ion  of spec ie s  A i n  t h e  

gas phase, ex sed as mole f r a c t i o n ,  may be represented  by 

the vapor-liq equi l ibr ium r e l a t i o n s h i p :  

xA = xA (T ,P)  a t  r = ro c 2 . 1 2 1  
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Under s t eady  state condi t ions,  a l l  the energy t r a n s f e r r e d  

t o  the d r o p l e t  s u r f a c e  by heat conduction i s  c a r r i e d  away 

e n t i r e l y  by the mass t r a n s f e r .  Hence, i t  fol lows that:  

r = r  
0 

a t  4nr 2 k ar dT = w(R' - EL) 12.133 

Before proceeding t o  the eva lua t ion  of both boundary 

condi t ions  r2.121 and [2.13], l e t  us  analyze some s impl i fy ing  

assumptions. 

(2.123 i s  t o  express  the mole f r a c t i o n  of component A i n  the 

gas phase, a t  the i n t e r f a c e ,  as the vapor pressure  of pure 

l i q u i d  A a t  the equi l ibr ium temperature divided by the t o t a l  

pressure,  i. e., 

One commonly used approximation f o r  Equation 

XA =z P V ( ~ ) / ~  a t  r = ro (2,141 

T h i s  r e l a t i o n s h i p ,  analogous t o  Equation [ 1.121, assumes that 

B i s  i n s o l u b l e  i n  A, t h a t  t h e  equi l ibr ium vapor pressure  of 

pure l i q u i d  A i s  no t  a f f e c t e d  by the presence of component 

B, and t h a t  the  gaseous mixture obeys the equat ion of' state 

f o r  ideal gases. It w i l l  be shown tha t  t h i s  approximation 

i s  far  from being c o r r e c t  a t  the pressure  l e v e l s  encountered 

i n  the c r i t i c a l  region.  Another approximation commonly used, 

and made i n  Equation 11.51, i s  t o  replace the t e r m  

i n  Equation 12.131 by the Latent heat of vapor iza t ion  of pure 

component A, eva lua ted  a t  the equi l ibr ium temperature. This  

- Rl) 

i s  an  ove r - s impl i f i ca t ion  a t  high t o t a l  p ressures .  The term 

(Rl  - Ti) i s  the amount of heat absorbed per mole when component 
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A evaporates  from the  l i q u i d  s o l u t i o n  i n t o  the gaseous mix- 

ture, a t  T and P, whereas X i s  t h e  heat r equ i r ed  t o  evaporate  

a pure substance from l i q u i d  i n t o  i t s  vapor, a t  T and pv(T) ,  

The t r ends  p red ic t ed  by the use of these s impl i f ied  

boundary condi t ions,  a l though p e r f e c t l y  valid. a t  low pressures, 

f a i l  t o  be c o r r e c t  a t  high pressures .  

Now, i n  order  t o  determine the thermodynamic equi l ibr ium 

condi t ions  a t  the d r o p l e t  i n t e r f a c e ,  besides the temperature 

and pressure  being equal i n  both  phases, the f u g a c i t y  (or  

chemical p o t e n t i a l )  of' every component must be the same i n  

both  phases, i .e. ,  

T = cons tan t  

P = cons tan t  
V a 

V a 
f* = fA 

fB = fB 

Equation of State 

To so lve  the governing equat ions  of  change and t h e i r  

boundary condi t ions  a s u i t a b l e  equat ion of state has t o  be 

used. Choosing among a v a i l a b l e  equations,  the simple Redlich-, 

Kwong equat ion  of state was selected, f o r  i t  has proved t o  

be reliable33 and i s  regarded as the best two-parameter equa- 

t i o n  now a v a i l a b l e  . It is  of the form 5 22 

[ Z .  161 

where a and b may be taken as func t ions  of composition and 

depend upon the p a r t i c u l a r  components involved. 
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Boundary condi t ions  [2.12] and 12.131 are computed basi- 

c a l l y  from Equations [2.15] and [2.16]. The detailed working 

forms of the equat ions are presented  i n  Appendix A. 

Thermophysical Proper t ies  

The numerical i n t e g r a t i o n  of the equat ions of change 

r equ i r e s  knowledge of the  partial  molal en tha lpy  of component 

A, EA, the thermal conduct iv i ty  of the mixture, k, as w e l l  

as the c o e f f i c i e n t  of b inary  d i f fus ion ,  DAB, o r  the  product 

. Very f e w  experimental  data t o  be c o r r e l a t e d  are CDAB 
available on these p r o p e r t i e s  for high pressure gaseous mix- 

tures. The c o r r e l a t i o n s  used i n  t h i s  work are presented 

i n  Appendix A with some of their  l i m i t a t i o n s .  

Numerical Method of Solu t ion  

The numerical i n t e g r a t i o n  of the equat ions of change 

throughout the vapor f i l m  was c a r r i e d  out  by using a r ecu r s ive  

formula of the t h i r d  ca tegory  due t o  Hewn . It is of the  

form : 

8 

[2.17] 

f2.181 
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; n = 0,1,2, ... [ 2.211 'n+l - rn 

The method i s  s e l f - s t a r t i n g  and there i s  no d i f f i c u l t y  i n  

a l t e r i n g  the increment s i z e ,  s, during the  i n t e g r a t l o n .  The 

partial d e r i v a t i v e s  which appear i n  Equation [2.7) were deter- 

mined by a centered  d i f f e r e n c e  technique. 

S e t t i n g  the t o t a l  pressure,  the  i n t e g r a t i o n  process  was 

i n i t i a t e d  a t  the d r o p l e t  su r f ace  by f i x i n g  i t s  temperature. 

The vapor iza t ion  rate, w, was i terated u n t i l  the  mole f r a c t i o n  

of' component A vanished a t  a large d i s t a n c e  from the d r o p l e t .  

The proper  ambient temperature results. Since the environ- 

mental condi t ions  are approached asymptot ical ly ,  the numerical 

i n t e g r a t i o n  i n  t he  vapor f i l m  was c a r r i e d  out  t o  a c e r t a i n  

radial d is tance ,  r*, where the  temperature p ro f i l e  d i d  no t  

change appreciably.  A t  t h i s  po in t  the equat ions  of change 

were modified by assuming cons t an t  k, c 

neg lec t ing  the  last t e r m  i n  Equation 12.71 which i s  very small 

for  r - > r+. 

asymptotic s o l u t i o n s  where SA and ? are used t o  i n d i c a t e  t h a t  

they  hold on ly  for r - > r*, 

- and cDAB, and 
PA' 

These s i m p l i f i c a t i o n s  lead t o  the  fol lowing 

1 

[ 2.223 

and 
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When the  numerical and asymptotic s o l u t i o n s  are matched a t  

r = r*, the i terated rate of vaporizat ion,  wi, i s  equal  t o  

the s teady  state vaporizat ion rate, w, and the temperature 

of the ambient gas r e s u l t s  from Equation I2.231, Sa t i s fy ing  

a l l  boundary condi t ions : 

I n  order  t o  obta in  the  s o l u t i o n  of the  equat ions of 

change and thelr boundary condi t ions,  the rate of vaporizat ion 

wars i terated th ree  o r  four times. 

(xA A 
was increased.  The i terat ive process  was f a c i l i t a t e d  s ince,  

When the mismatch index, 
u 

-x ) (r*), was a p o s i t i v e  number, the  r a t e  of vaporizat ion 

f o r  values  of wi c l o s e  t o  the s teady  state vaporizat ion rate, 

w, the  mismatch index mentioned above v a r i e s  l i n e a r l y  w i t h  

Since temperature and composition gradients are very 

large near  the d r o p l e t  surface, the radial increment s i z e  

i n  the  numerical technique was var ied  from 0.025ro near  the  

sur face  t o  O . l r o  near  t he  edge of the boundary l aye r .  

e n t i r e  s teady  state s o l u t i o n  takes approximately 15 seconds 

using a UNIVAC 1108 d ig i ta l  computer. 

The 

Applicat ions t o  a C02-N2 System 

The components s tud ied  i n  the c r i t i c a l  region were 

carbon dioxide (component A )  vaporizing i n  a n i t rogen  

(component B) atmosphere. The c r i t i c a l  temperature of pure 

C02 i s  304.2 OK and i t s  c r i t i c a l  p ressure  72.9 a t m .  23 T h i s  
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s e l e c t i o n  of components was made because both are nonpolar 

and of r e l a t i v e l y  simple molecular s t r u c t u r e ,  

F i r s t  l e t  us cons ider  the boundary condi t ions .  Figure 

2.1 i s  a c a l c u l a t e d  fugacity-composition diagram f o r  the 

C02-Nz system under reduced cond i t ions  of T/TcA = 0.9 and 

P/PcA = 1.3. The upper p o r t i o n  of the f i g u r e  d e p i c t s  the  

v a r i a t i o n  of n i t rogen  fugacity with composition whereas the 

lower p o r t i o n  r e p r e s e n t s  the v a r i a t i o n  of carbon d ioxide  

fugac i ty .  The broken l i n e s  determtne the C02 cornposition i n  

bo th  l l q u i d  and gas phases f o r  these i so thermal  and i s o b a r i c  

condi t ions  as s p e c i f i e d  by the set of equat ionsf2.151.  Repet i -  

tive a p p l i c a t i o n  of the above technique y i e l d s  Figure 2.2 

which shows a composition-pressure diagram f o r  reduced 

equ.i l ibrium isotherms of 0.90 and 0.95. Reduced condi t ions  

are based on the c r i t i c a l  pressure and temperature of pure 

C02. 

shows the composition of carbon dioxide i n  t h e  gas phase 

which i s  i n  equi l ibr ium wi th  a corresponding l i q u i d  phase 

composition represented  by the upper side of the curve f o r  

d i f f e r e n t  values  of t o t a l  p ressure .  On the lower pressure  

For a given isotherm, the  lower s i d e  of.  the s o l i d  curve 

side t h e  mole f r a c t i o n  of carbon d ioxide  i n  both phases i s  

equal  t o  u n i t y  when the t o t a l  p ressure  of the system i s  equa l  

t o  t h e  vapor pressure Corresponding t o  that isotherm. Above 

a c e r t a i n  pressure  the mole f r a c t i o n  of carbon d ioxide  i n  the 

gas phase i n c r e a s e s  rather than  decreases, with the r e s u l t  t h a t  

a t  s t i l l  higher p re s su res  l l q u i d  and gas compositions become 
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equal  a t  the c r i t i c a l  mixing poin t .  Accordingly, f o r  a given 

isotherm, there e x i s t s  a d e f i n i t e  upper limit on the t o t a l  

p ressure  of  the system above which steady state condi t ions  

cannot be a t t a i n e d .  Therefore,  s tates ou t s ide  the  envelope 

enclosed by p o i n t s  Cy D, E, . . . are i n t r i n s i c a l l y  unsteady. 

Point C corresponds t o  the c r i t i c a l  po in t  of pure carbon 

dioxide.  It i s  observed that the range of  t o t a l  p re s su res  

i n  order  t o  achieve s t eady  state temperatures becomes wider 

as t h e  d r o p l e t  temperature (which depends also on the ambient 

temperature) decreases  i n  the reg ion  of the thermodynamic 

c r i t i c a l  po in t  of carbon dioxide.  

The broken l i n e s  r ep resen t  the ideal vapor phase compos- 

i t i o n s  p red ic t ed  by Equation [2.14]. It i s  apparent  t h a t  t h i s  

r e l a t i o n s h i p  does no t  hold a t  high l e v e l s  of t o t a l  p ressure .  

The behavior i l l u s t r a t e d  i n  Figure 2.2, which applies 

only  a t  the  d r o p l e t  i n t e r f a c e ,  may be understood q u a l i t a t i v e l y  

f o r  t he  partial molal volume of carbon dioxide r e v e r s e s  i t s  

s i g n  a t  high pressures .  Unlike t h e  molar volume of a pure 

substance, the partial  molal volume of a component may be 

either pos t ive  o r  negat ive.  Since the partial  molal volume 

of a component r e p r e s e n t s  the volume change which i s  exper- 

ienced by the e n t i r e  mixture when a very small amount of that  

component i s  added a t  cons t an t  temperature and pressure,  the  

gaseous mixture tends  t o  s h i f t  i t s  p r o p e r t i e s  from a gaseous 

t o  a l i q u i d  state. 



30 

Considering the approximations involved and t h a t  on ly  

very f e w  pure component data are requi red ,  the agreement wi th  

experimental  data of Reference 34 i s  found s a t i s f a c t o r y .  Near 

the c r i t i c a l  mixing po in t  the equi l ibr ium r e s u l t s  are extreme- 

l y  s e n s i t i v e  t o  small e r r o r s  i n  the q u a n t i t i e s  involved and 

as a consequence, i t  was found tha t  the c r i t i c a l  p o i n t s  C, 

D, E, . . ., are somewhat scattered. Observing Figure 2.1, i t  

i s  noted that, as a c r i t i c a l  mixing p o i n t  i s  approached, the 

f u g a c i t y  curves  form an i n f l e c t i o n  point ,  and hence small 

e r r o r s  i n  the f u g a c i t y  c a l c u l a t i o n s  cause r e l a t i v e l y  larger 

e r r o r s  i n  the composition r e s u l t s .  I n  r e t r o s p e c t ,  i t  may have 

been preferable t o  determine, simultaneously with the e q u i l i -  

brium c a l c u l a t i o n s ,  the c r i t i c a l  p o i n t s  envelope by some o t h e r  

technique, such as the one o u t l i n e d  i n  Reference 6, i n  order 

t o  smooth the  computed data. 

Figure 2.3 shows the  isothermal d i f f e r e n c e  i n  the  partial  

molal e n t h a l p i e s  of carbon d ioxide  a c r o s s  the  droplet  i n t e r -  

face, (Ri  - zi), as compared t o  i t s  l a t e n t  heat of vapor iza t ion ,  

X ,  f o r  t he  same equi l ibr ium isotherms. 

A t  p o i n t s  C, D, and E of Mgure  2.3, the  d i f f e r e n c e  i n  

the  partial  molal en tha lpy  of carbon d ioxide  a c r o s s  the  i n t e r -  

face  becomes equal  t o  ze ro  s i n c e  the temperature, pressure,  

and composition are i d e n t i c a l  i n  both phases. The broken 

l i n e s  r ep resen t  the  l a t e n t  heat of vapor iza t ion  of carbon 

d ioxide  eva lua ted  a t  T/TcA = 0.90, 0.95 by means of the 

gene ra l i zed  enthalpy dev ia t ion  charts of Lydersen, Greenkorn, 
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14 and Hougen . Thus, even a t  a s u b c r i t i c a l  

carbon dioxide,  the d i f f e rence  i n  en tha lpy  

face  may vanish. 

temperature of 

across  the i n t e r -  

Figure 2.4 shows a t y p i c a l  pressure-volume diagram f o r  

the carbon dioxide-ni t rogen system under thermodynamic e q u i l i  - 
brim condit ions.  T h i s  diagram compares favorably well wi th  

the  experimental  r e s u l t s  of Reference 18. 

Figure 2.5 i l lust rates  g r a p h i c a l l y  the departures from 

the equat ion of s t a t e  of ideal gases i n  the  gas phase a t  the  

d rop le t  i n t e r f a c e  as a func t ion  of pressure  f o r  the isotherm 

T / T , ~  = 0. go. 

Thus far complete thermodynamic equi l ibr ium a t  the  i n t e r -  

face  has been assumed. Considering t h a t  the  r a t e s  of vapori-  

za t ion  may be large enough that thermodynamic equi l ibr ium 

a t  the i n t e r f a c e  may not  be attained, l e t  us analyze the  boun- 

dary  condi t ions  and their  r e s u l t s  by assuming t h a t  n i t rogen  

is i n so lub le  i n  l i q u i d  carbon dioxide.  I n  other words, l e t  

us pos tu l a t e  that  very few of the  n i t rogen  molecules i n  t h e  

gas phase tha t  s t r ike  the  i n t e r f a c e  have s u f f i c i e n t  time t o  

pene t r a t e  and become dissolved i n  the l i q u i d  phase. 

For t h i s  s i t u a t i o n ,  the  computed values  of carbon 

dioxide mole f r a c t i o n  i n  the gas mixture are gene ra l ly  higher  

than those obtained under thermodynamic equi l ibr ium condi t ions.  

Furthermore, f o r  a given isotherm, the mole f r a c t i o n  of C02 

i n  the gas phase starts inc reas ing  a t  a c e r t a i n  value of t o t a l  
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pres su re  lower than i n  the corresponding equi l ibr ium case 

(approximately 80 atmospheres f o r  the 0.90 reduced isotherm).  

One d i f f i c u l t y  i s  encountered wi th  t h i s  hypothesis :  s ince  

the c r i t i c a l  points , .where the temperature, pressure,  and 

composition are the  same i n  both phases, cannot e x i s t  as a 

consequence of t h e  pos tu la te ,  there i s  no c l e a r  t r a n s i t i o n  

from two t o  one phase states. Although the d i f f e rence  i n  

ac ross  the i n t e r f a c e  does no t  vanish a -V 
en tha lp i e s ,  HA - 'A# 

a t  any isotherm d i f f e r e n t  from the c r i t i c a l  of carbon dioxide 

due t o  the above d i f f i c u l t y ,  i t  does fol low the  same t r ends  

as Phosepredic ted  under thermodynamic equi l ibr ium condi t ions .  

Approximate c a l c u l a t i o n s  show t h a t  the partial  molal 

en tha lpy  of Cog i n  the  l i q u i d  so lu t ion  i s  nea r ly  the same 

as the one f o r  pure l i q u i d  Cog, a t  the  same temperature and 

pressure .  Thus, there i s  a neg l ig ib ly  small temperature 

d i f f e rence  between the  core  of the  d rop le t  anh i t s  i n t e r f a c e .  

Figures  2.6 and 2.7 show t y p i c a l  temperature and composi- 

t i o n  p r o f i l e s  i n  the mixture surrounding an a r b i t r a r y  1000-~- 

r ad ius  drople t .  Both temperature and composition v a r i a t i o n s  

i n  the mixture are confined t o  a reg ion  of the o rde r  of several 

d rop le t  diameters. A t  a given value of t o t a l  pressure,  t he  

boundary l a y e r  i nc reases  with inc reas ing  ambient temperature 

and, a t  a fixed d rop le t  temperature decreases  wi th  inc reas ing  

t o t a l  pressure.  

Property v a r i a t i o n s  i n  t h e  f i l m  surroundlng a d r o p l e t  

are shown i n  Figure 2.8. For the cond i t ions  i l l u s t r a t e d  i n  
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t h i s  figure, the mixture compress ib i l i t y  f a c t o r  changes from 

a value of about 0.68 t o  u n i t y  i n  a small radial d i s t ance  of 

the order  of one d rop le t  r a d i u s  from the surface.  

Figures  2 . 9  and 2.10 show that the  higher the ambient 

temperature,  the higher t h e  rate of vaporizat ion and the 

higher the s teady  state temperature, under f ixed  pressure  

condi t ions.  As carbon dioxide approaches i t s  c r i t i c a l  point ,  

e s s e n t i a l l y  no n i t rogen  surrounds the d r o p l e t  and hence a 

large temperature d i f f e rence  between the ambient and d rop le t  

must e x i s t  so that  heat may be conducted t o  the d rop le t  surface.  

2hese f i g u r e s  also show that, f o r  the same ambient condi t ions,  

there I s  a small d i f f e rence  between the computed s teady  state 

temperatures and mass vaporizat ion rates by using i n  the model 

ei ther one of the  two assumptions a t  t h e  i n t e r f a c e  prev ious ly  

discussed,  i . e . ,  thermodynamic equi l ibr ium and no ni t rogen 

s o l u b i l i t y  i n  l i q u i d  carbon dioxide.  However, i t  should be 

poin ted  ou t  that f o r  values  of t o t a l  pressure higher than 

the  c r i t i c a l  p ressure  of COz, the d i f f e rence  between the com- 

puted s teady state r e s u l t s  i s  g r e a t e r ;  e .g . ,  a t  ambient condi- 

t i o n s  of approximately 84 atm. and 1290'K the  rates of vapori-  

za t ion  d i f f e r  by about 24 percent  and the s teady state 

temperatures by seven percent .  Since the  equi l ibr ium pos tu l a t e  

i s  thermodynamically cons i s t en t ,  the r e s u l t s  repor ted  hereafter 

use t h i s  assumption. 

I 

Cross p l o t s  of s teady qtate temperatures and vaporizat ion 

rates are shown i n  Figures  2.11 and 2.12. These curves a r e  
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terminated on t h e  r igh t  a t  the c r i t i c a l  mixing l i n e  s i n c e  

p o i n t s  a t  higher p re s su res  do no t  correspond t o  steady state 

s o l u t i o n s  and can only be reached by a n  unsteady process. 

For a given l i q u i d  temperature the vapor iza t ion  rate and 

n i t rogen  temperature decrease r a p i d l y  wi th  increased  pressure.  

The vapor iza t ion  ra te  tends  t o  l e v e l  off and i n c r e a s e s  s l i g h t l y  

as the c r i t i c a l  mixing l i n e  i s  approached. For a given n i t r o -  

gen temperature the  s teady  state temperature and vapor iza t ion  

rate i n c r e a s e  as the pressure  of the system i s  increased .  The 

higher the  pressure,  the higher the rate of i n c r e a s e  of the 

s teady  state temperabure with ambient temperature. Schemati- 

c a l l y ,  Figure 2.13 i n d i c a t e s  that for a l l  those environmental 

condi t ions  t o  the l e f t  of the l i n e  def ined  by p o i n t s  e, D, E, 

..., whose absissae are determined by the  c r i t i c a l  mixing 

p res su res  (po in t  C i s  fixed by the c r i t i c a l  p ressure  of C02), 

the l iqu id  d r o p l e t  heats up from i t s  i n j e c t i o n  temperature t o  

i t s  s t eady  state temperature remaining a t  t h i s  condi t ion  u n t i l  

the vapor iza t ion  process  i s  completed. Of course the  d r o p l e t  

may not a t t a i n  i t s  steady s ta te  temperature i f  the i n j e c t i o n  

condi t ions  are such tha t  the vapor iza t ion  process  i s  terminated 

before s t eady  state condi t ions  are reached. On the other 

hand, for all the  ambient cond i t ions  t o  the r igh t  of  the  

mentioned l i n e ,  the d r o p l e t  cont inuously heats up from i t s  

i n j e c t i o n  cond i t ions  u n t i l  the vapor iza t ion  process  i s  com- 

9 

pleted. 
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Near the c r i t i c a l  mixing l i n e ,  where the change of 

en tha lpy  a t  the d r o p l e t  i n t e r f a c e  i s  small, s l i g h t  inaccurac i e s  

i n  the determinat ion of the c r i t i c a l  mixing pressure  cause 

larger inaccurac i e s  i n  the  en tha lpy  of vapor iza t ion  and 

consequently, the  steady state r e s u l t s  may be a f f e c t e d .  To 

analyze the o v e r a l l  s e n s i t i v i t y  of the model t o  t h i s  type of 

inaccuracy, a change of approximately f i v e  percent  was made 

i n  the  c r i t i c a l  mixing presswe of t h e  0.96 carbon dioxide 

c r i t i c a l  isotherm. 

of vapor iza t ion  of the order  of 30 percent  a t  102 atmospheres. 

However, under n i t rogen  condi t ions  of 85OoK and 102 atmospheres 

the c a l c u l a t e d  steady state r e s u l t s  are v i r t u a l l y  t h e  same. 

T h i s  caused a d i f f e r e n c e  i n  the enthalpy 

Vaporizat ion times may be readily estimated from the  

foregoing r e s u l t s .  U@ng the equat ion of c o n t i n u i t y  f o r  the 

d i f f u s i n g  vapor leav ing  the d rop le t ,  w = - 4mocA(dro/dt) ,  

and not ing  that the ra te  of vapor iza t ion  i s  propor t iona l  t o  

the d r o p l e t  r ad ius ,  from t h e  numerical r e s u l t s ,  the  fol lowing 

expression f o r  the vapor iza t ion  t i m e  spen t  under s teady  state 

2 a  

cond i t ions  i s  obtained: 

1 2 
tv = - (2ro) 

Kv 

where the vapor iza t ion  rate constant ,  Kv, i s  given by 

- 2w 
IC, - R 

nrocA 

[ 2.241 

[2= 251 

The above two express ions  are completely analogous t o  

Equations [1.20]and C1.211. For some given environmental 
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condi t ions,  the vapor iza t ion  rate cons tan t  Kv may be obtained 

from Figure 2.12 and the pure C02 molar d e n s i t y  from Reference 

14. 

Comparisons wi th  a L o w  Pressure Model 

It is of i n t e r e s t  t o  compare the foregoing computed C02-N2 

r e s u l t s  with those  predicted by Equations l'1.81 and 11.141 

under the same ambient condi t ions .  For convenience, the  

presented above s t eady  s ta te  formulat ion under high pressure  

condi t ions  i s  referred here as the  high p res su re  QS model, 

whereas the s implif ied formulat ion which y ie lded  Equations 

11.81 and [1.14] is referred as the  low pressure model. I n  

the comparisons which follow, average low pres su re  values  f o r  

the phys ica l  p rope r t i e s  i n  the  vapor f i l m  were used i n  

Equations [1.8] and (1.141. 

Figure 2.14 shows the s teady  state cond i t ions  pred ic ted  

by both models as a func t ion  of t o t a l  p re s su re  and a n i t rogen  

temperature of 600°K. Other s t eady  state r e s u l t s  under a system 

p res su re  of 72.9 atmospheres ( c r i t i c a l  p re s su re  of carbon 

dioxide)  are presented i n  Figure 2.15. 

The fol lowing ~ o n c l ~ ~ s i o n s  may be drawn from the  ca l cu la -  

t t o n s  : 

i. The low p res su re  model may p r e d i c t  more than 

one o r  no a n a l y t i c a l  so lu t ion  a t  high pres- 

s u r e  l e v e l s  as is i l l u s t r a t e d  i n  Figure 2.14. 

Although the broken l i n e  s o l u t i o n s  may 
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arbitrarily be considered unrealistic, the results 

are beclouded by the fact that the solution is 

not unique. 

At low ambient temperatures and high system 

pressures, the rates of vaporization predicted 

by the low pressure model are lower than those 

ii. 

given by the high pressure QS model, e.g., at 

475OK and 115 atmospheres the low pressure 

model vaporization rate is about 35 percent 

lower than the high'pressure QS model vapori- 

zation rate. 

iii. At high ambient temperatures and a system pres- 

sure equal to the critical pressure of C O q ,  

the rates of vaporization given by the low 

pressure model are higher than those predicted 

by the high pressure QS model, e.g., at 1600OK 

and 72.9 atmospheres the low pressure model 

rate of vaporization is about 2 2  percent higher 

than the high pressure QS model mass vaporization 

rate. 

The steady state temperatures predicted by the low 

pressure model are in general higher than those obtained 

with the high pressure QS model, under the same environmen- 

tal conditions. A s  a consequence, the low pressure model 

adjusts itself to the increase in the total pressure of the 
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system by decreasing the latent heat of vaporization and 

increasing the vapor pressure at the interface, along the 

pure C02 saturation curve, thus reducing in part the large 

property discrepancies between these models; e.g., at 600°K 

and 72.9 atmospheres, the increase in the steady state 

temperature reduces the difference in the heats of vapori- 

zation of these models from about 56 percent to 50 percent 

and the C02 mole fractions at the interface from approxi- 

mately 32 percent to 23 percent. 

Although the results given by the models are not com- 

pletely different under the same ambient conditions, it 

nevertheless may be considered fortuitous that the low 

pressure model estimates the steady state conditions with- 

out larger discrepancies, for the low pressure model is 

unrealistic in itself at high levels of total pressure. 

Concluding Remarks 

Summarizing the present analysis, the following remarks 

are made: 

i. It is evident from the foregoing study that for a 

given value of ambient temperature there is an upper limit 

in the total pressure of the system above which steady state 

conditions cannot be obtained in the vaporization process. 

This implies that for pressures above this limit the droplet 
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continuously heats up from its injection conditions until 

complete disappearance. This remark seems to be supported 

by liquid temperature measurements9 which indicate that at 

high pressures the temperature rises continuously throughout 

the droplet lifetime. Therefore, supercritical temperatures 

may only be reached at supercritical pressures by an unsteady 

process. 

ii. Non-ideal effects cannot be ignored. The effect 

of the inert gas pressure on the vapor pressure is apprecia- 

ble a t  high levels of total pressure and the heat of vapori- 

zation is drastically modified. 

iii. By assuming constant mean physical properties in 

the equations of change, [2.71 and[2.9], the steady state 

temperature is predicted without significant difference 

but the vaporization rate is approximately 35 percent higher 
than the corresponding variable properties case, under ambient 

conditions of 72.9 atmospheres and 1600'K. 

lv. The assumption of unidirectional diffusion in the 

steady state regime becomes gradually less valid as the 

ambient temperature is decreased and the pressure in the 

system is increased. 

v. In agreement with previous studies the time of 

vaporization spent under steady state conditions is propor- 

tional to the square of the droplet diameter. 

vi. Because experimental data are not  available for 

comparison purposes, the accuracy OP the model is difficult 
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t o  assess. The u n c e r t a i n t i e s  i n  the p rope r t i e s  of high 

p res su re  mixtures  c e r t a i n l y  may affect the  abso lu te  values  

repor ted .  

v i i .  Comparing the  r e s u l t s  obtained with those  given by 

a s implif ied low pressure model, Equations tl.83 and f1.141, 

i t  i s  observed t h a t  the slmpl.lf1ed model does have more than 

one o r  no a n a l y t i c a l  s o l u t i o n s  a t  high pressure l eve l s .  

Furthermore, under some given ambient cond i t ions  of tempera- 

t u r e  and pressure,  the simplified model p r e d i c t s  s t eady  state 

cond i t ions  which phys ica l ly  cannot be obtained as may be 

understood from Figure 2.2. This  c l e a r l y  i n d i c a t e s  t ha t  t he  

low pressure  model i s  no t  p rope r ly  posed f o r  high p res su re  

environmental condi t ions .  
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111. UNSTEXDY DROPLET VAPORIZATION 
AT HIGH AMBIENT PRESSURES 

Thus far, only  s t eady  state condi t ions  have been cons i -  

dered, ignor ing  the unsteady heating-up per iod of the drop- 

l e t .  It i s  the  purpose of t h i s  s e c t i o n  t o  analyze the 

en t i r e  vapor iza t ion  process  inc luding  the heating-up of the 

d r o p l e t  from i t s  i n i t i a l  condi t ions,  t he  r eg res s ion  of the  

d r o p l e t  su r f ace  caused by evaporation, and the inhe ren t  

t r a n s i e n t  e f f e c t s  i n  the gaseous phase. 

The bas i c  r e l a t i o n s h i p s  are first der ived  i n  gene ra l  

form f o r  a s p h e r i c a l l y  symmetric model of a d r o p l e t  under- 

going vapor iza t ion  i n  an i n e r t  atmosphere. These r e l a t i o n -  

sh ips  are then app l i ed  t o  a carbon dioxide drop le t  vaporizing 

i n  n i t rogen .  Thermodynamic equi l ibr ium a t  the  d r o p l e t  

i n t e r f a c e  (when i t  e x i s t s )  w i l l  be assumed. The e n t i r e  l i q u i d  

d r o p l e t  i s  assumed t o  have a uniform temperature and the  

amount of n i t rogen  d isso lved  i n t o  l i q u i d  carbon d ioxide  i s  

confined t o  a very t h i n  layek a t  the d r o p l e t  sur face .  Viscous 

d i s s i p a t i o n ,  r a d i a n t  energy exchange, and coupling e f f e c t s  

between t r a n s p o r t  processes ,  such as  the t r a n s p o r t  of energy 

due t o  concent ra t ion  g r a d i e n t s  and the t r a n s p o r t  of mass due 

t o  temperature g rad ien t s ,  are assumed t o  be phys ica l ly  

negligible. A l l  the  non-ideal e f f e c t s  associated with dense 

56 
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mixtures, as w e l l  as the v a r i a t i o n  of the  thermophysical 

p r o p e r t i e s  through the boundary layer are taken into account. 

I n  the a n a l y s i s  t ha t  follows subscript A refers t o  the 

chemical spec ie s  of the droplet ,  and B to t h e  i n e r t  environ- 

ment. 

Theore t i ca l  Model 

Governing Equations 

The f u l l y  unsteady one-dimensional t reatment  of the  

vapor iza t ion  process  i n  the gaseous phase can be descr ibed  

by the equat ion of c o n t i n u i t y  of spec ie s  A, the  equat ion of 

energy, and a n  appropr i a t e  equat ion of state.  

A mass balance of  species A i n  a s p h e r i c a l l y  symmetric 

s h e l l  surrounding a d rop le t  leads t o  the  d i f f e r e n t i a l  equat ion 

where cA i s  the molar concent ra t ion  of component A i n  the  

gaseous mixture, VAo i s  the  v e l o c i t y  of A r e l a t i v e  t o  s t a t io -  

na ry  coordinates ,  and ro = ro ( t )  is t h e  d r o p l e t  r ad ius .  

S imi la r ly ,  a mass balance f o r  t he  e n t i r e  mixture leads 

t o  the d i f f e r e n t i a l  equat ion 

where c is the  molar d e n s i t y  of the mixture, and VMo i s  the 

molar average v e l o c i t y  of the mixture def ined  by 



Yqo = XA'AO + X ~ V ~ ~  

5 8  

C 3 . 3 1  

Neglecting viscous dissipation, radiant energy exchange, 

the Dufour energy flux, and assuming constant pressure in 

the system, an energy balance leads to the differential 

equation 

- 2 2 - a (CARA + c IT 1 + - 1 - a (r cAvAoiiA + r cBvB~HB) 2 ar B B  r at 

2 aT = (r k , r>ro(t> C 3 . 4 1  
r 

where ci is the molar concentration of component i, Ri is 
the partial molal enthalpy of component i, Vio is the velocity 

'of i with respect to stationary coordinates, k is the ther- 

mal conductivity of the mixture, and T = T(r,t) is the 

temperature distribution in the gas phase. 

The molar density c is determined by an equation of 

state, namely 

c = c(T,P,xA) r 3 . 5 1  

The above equations of change can be written more conveniently 

in terms of molar fluxes and composition gradients by intro- 

ducing Fick's first law for ordinary diffusion, as Fourier's 

law for heat conduction was introduced in Equation C3.41. 

Thus, the molar fluxes of species A and B may be expressed 

in the form 

C 3 . 6 1  
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and 

13.71 

The above two expressions are e n t i r e l y  analogous t o  Equation 

[1.9] s i n c e  cVNo = NA -I- NB. 

Therefore,  s u b s t i t u t i n g  [3.6] and c3.73 i n t o  the  equat ions 

of change, they may be arranged i n  the fol lowing form: 

-I- cvMO aXA - a (r 2 cDA- a*A) 
a r  - 7 C 

and 

c = c (T, P,XA) r 3.111 

- 
The par t ia l  molal enthalpy of each component, HA and 

- the thermal conduct iv i ty  of the  mixture, k, and t he  

b inary  d i f f u s i v i t y ,  DAB, are I n  genera l  func t ions  of tempera- 

t u re ,  pressure,  and composftion. For convenience, the product 

w i l l  be considered as a s i n g l e  var iab le ,  f o r  i t  may be 
D~~ 

regarded as a func t ion  of temperature and a weak funct ion 

of pressure.  

and t r a n s p o r t  p rope r t i e s  are presented i n  Appendix A. 

The c o r r e l a t l o n s  t o  determine these thermodynamic 

The 
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molar d e n s i t y  of the mixture, c, w i l l  be determined by t h e  

Redlich-Kwong equat ion of state, Equation [ 2.161. 

Since the t o t a l  pressure of the system i s  e s s e n t i a l l y  

constant ,  by the chain r u l e  

and 

where the  stolchlometric r e l a t i o n  xA + 5 = 1' must be satisfied. 
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Equations [ 3.61 t o  3.191 determine the %evolut ion with 

t i m e  of the one-dimensional p r o f i l e s  xA = x A ( r , t ) ,  T = T 

(r,t), and VMo = VMo(r , t )  i n  the gas phase. 

In order t o  integrate numerical ly  the governing equat ions,  

a f i n i t e  d i f f e rences  g r i d  w i l l  be imposed on the  gaseous mix- 

ture. Since the d rop le t  r a d i u s  i s  t i m e  dependent, the  follow- 

ing t ransformation i s  introduced here for later convenience: 

y = r - r o ( t )  t3.201 

Thus, by the chain r u l e  

and 
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where V i s  the v e l o c i t y  of the mixture relative t o  the MY 
d r o p l e t  sur face .  

The equat ion of c o n t i n u i t y  f o r  the mixture may be i n t e -  

grated t o  obta in  the v e l o c i t y  d i s t r i b u t i o n .  Thus, i n  the 

independent variables y and t, 

Y 

Under s teady  state condi t ions and u n i d i r e c t i o n a l  d i f f u s i o n  

the above expression reiterates that  the rate of vapor iza t ion  

i s  cons tan t  with the radial d is tance .  

Similar ly ,  t h e  equat ions of c o n t i n u i t y  f o r  spec ie s  A 

and energy become, i n  the Independent vasfables y and t, 

2A 
l3.291 
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C =  k = a  - -  
P c c  

- _ .  F = 1 FA a'A - - (1-xA) 
P axA C 

r3.353 

and 

= XAFpA + x z P B PB C 

The governing equations 

13-38] 

of change must be  supplied with 

an appropriate set of i n i t i a l  and boundary condit ions .  

I n i t i a l  Conditions 

Numerical d i f f i c u l t i e s  are c e r t a i n l y  encountered i f  one 
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attempts t o  cons ider  the  i n j e c t i o n  of a l i q u i d  droplet  i n t o  

pure component B, for no boundary l a y e r  e x i s t s  a t  t = 0. A 

common approach to treat t h i s  s i n g u l a r i t y  i s  t o  start the 

numepica1 s o l u t i o n  wi th  assumed p r o f i l e s  for small values  of 

t i m e .  While t h i s  approach may be v a l i d  for  c e r t a i n  problems, 

t h e  assumed p r o f i l e s  may lead t o  u n r e a l i s t i c  solutions due t o  

t h e  extremely non l inea r  behavior of the d i f fe ren t ia l  equat ions.  

Therefore, the i n i t i a l  condi t ions  t o  be considered here are 

those of a d r o p l e t  of r a d i u s  ro (0) vaporizing under quas i -  

s t eady  condi t ions  and maintained a t  its i n i t i a l  temperature, 

T a ( 0 ) ,  f o r  t < 0, Although these cond i t ions  are d i f f i c u l t  

t o  be satisfied e x a c t l y  i n  p rac t i ce ,  it i s  considered t h a t  

these i n i t i a l  cond i t ions  are bet te r  than  the assumption of 

uncoupled prof i les  i n  the gas phase. 

Thus, 

T(Y,O) = Tqs(Y) I Y - > o  r3.391 

and 

13.403 

where T (y)  and x 

composition p r o f i l e s  i n  tk vapor film surrounding a d r o p l e t  of 
a r a d i u s  ro (0) and temperature T ( 0 )  undergoing quasi-s teady 

vapor iza t ion .  The governing equat ions which y i e l d  these i n i t i a l  

cond i t ions  are the same a8 those presented  i n  the previous 

steady state section,modifying boundary cond i t ion  12.131 i n  

(y) are r e s p e c t i v e l y  t h e  temperature and 
CIS qs 
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order  t o  take i n t o  account the  excess  energy a r r i v i n g  a t  the 

d r o p l e t  su r f ace  which i s  not  c a r r i e d  away by the mass t r a n s -  

fer,  s ince  the d r o p l e t  i s  not  vaporizing under s teady state 

condi t ions.  

Boundary Conditions 

The boundary condi t ions  f o r  Equations C3.281, C3.291, 

and 13.301 are now descr ibed.  

Since the ambient condi t ions  are spec i f ied ,  

T(, , t)  = T, , t > O  r 3.411 

and 

A t  the d r o p l e t  surface,  

T ( 0 , t )  = T e ( t )  9 t > O  - [3.431 
and 

XA ('8 t, = XA (T, , t > O  - i3.441 

Assuming small departures from equi l ibr ium, Equation 

[ 3.441 is d e t e r d n e d  by the vapor- l iqu id  equi l ibr ium r e l a t i o n -  

sh ip  xA = xA(T,P). 

previous sec t ion ,  the c r i t i c a l  mixing po in t s  envelope d e l i n e a t e s  

However, as i t  was poin ted  out  i n  the 

the region where two phases i n  a b inary  system can coex i s t  

i n  thermodynamic equi l ibr ium. Therefore, f o r  those states 

ou t s ide  the  c r i t i c a l  mixing l i n e ,  where a gaseous phase 

surrounds the pos tu l a t ed  core  of the  l i q u i d  droplet, boundary 
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cond i t ion  C 3 . 4 4 1  may be determined v i a  a n  o v e r a l l  conser- 

va t ion  equat ion ,  such as 
W W 

4rr  2 (cxA) d r  4 n r  2 cxAdr - I t = O  
m d ( 0 )  - m d ( t )  = 

= w d t  i: C 3 . 4 5 1  

where m d ( t )  is  t h e  mass of t h e  d r o p l e t ,  and w is the  rate 

of vapor iza t ion .  The above r e l a t i o n s h i p  i n d i c a t e s  t h a t  t h e  

t o t a l  amount of component A i n  t h e  system is  cons tan t .  The 

p r a c t i c a l i t y  of Equation C3.451 w i l l  be d iscussed  later.  

T h e  v e l o c i t y  ( O , t ) ,  which appears  i n  Equation C3.281, 
Y 

can be determined us ing  t h e  fol lowing r e l a t i o n s h i p :  

Since it is  assumed t h a t  t h e  v e l o c i t y  of component B rela- 

t i v e  t o  t h e  d rop le t  su r f ace  i s  nea r ly  equal  t o  zero  a t  

y = 0 ,  it fol lows t h a t  

C 3.471 

I n  order t o  determine t h e  l i q u i d  temperature ,  and t h e  

pos i t i on  of t h e  d r o p l e t  s u r f a c e ,  a d d i t i o n a l  equat ions are 

requi red .  These are suppl ied  by t h e  fol lowing equat ions  of 
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energy and c o n t i n u i t y  i n  t he  l i q u i d  phase: 

13.491 

Therefore,  the  set of equat ions 13.281, 13.291, [3.30], 

[3*39], 13.401, 13-41], 13.423, 13.431, 13-44], [3.471, C3-481, 

[ 3.491, and [ 3.505 descr ibe  the  e n t i r e  vaporizat ion process .  

Numerical Method of Solu t ion  

The numerical s o l u t i o n  of the governing equat ions i n  

t he  f i l m  c l e a r l y  poses a problem. While an i m p l i c i t  teeh-  

nique may have numerical s t a b i l i t y  advantages, the  na ture  of 

the  equat ions seems t o  preclude any so lu t ion ,  f o r  i f  i t  would 

be feasible, i t  would involve the simultaneous s o l u t i o n  of an  

enormous amount of nonl inear  a lgeb ra i c  equat ions.  Therefore,  

an e x p l i c i t  scheme was cont r ived  t o  so lve  the governing equa- 

t i o n s  i n  t h e  gaseous f i l m .  Since the technique i t s e l f  may 

be of i n t e r e s t ,  i t  i s  descr ibed  i n  detail  below. 

A gr id  was imposed on $he gaseous mixture surrounding 

the  d rop le t  as shown i n  Figure 3.1. Forward d i f f e rences  

were used t o  determine the t i m e  de r iva t ives ,  and centered  

d i f f e rences  t o  determine t h e  space depivat ives .  Thus, f o r  
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any va r i ab le  u ( y , t )  

; U i + l , j  -2ui , j  + ui-l,j 

(a Y) aY 
13.533 

The I n t e g r a l s  which appear  i n  Equation 13.281 were 

detemnined by the t r apezo ida l  r u l e  as i n  

\ u  dy p [ u * , j  + u i, 3 + 2(u 1, j f u 2,j + * * *  

Therefore, s u b s t i t u t i n g  the above f i n l t e - d i f f e r e n c e  

r e l a t i o n s h i p s  i n t o  Equations [3,28], E3.291, and 13.301: 
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I i = 1, 2, ..* l3.551 

i-1, j - x  i+1, j X 

2 t!Y 
Ti+l, j - 2Ti 

C 
-1,j 

si, 3 Ti+l, j - Ti-l,J + 263T i c I Y  f roj 
2 E 

-i, J 

1 To, j + l  
TO, j A C 

i-1 

- x  n, j+l n, 
A t  

x 
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- xi+l, j -2x1 , j + xi-l,J %, jEi, j 
(AY12 

xi+l, j i - lJ - Ei, j EiJ T i + l ,  j - T i - 1 , j  
- x  

+(% j 2 AY 2 bY 

where 

i ,  j+l - xi,j -i,J = A t  
X X 

xi+l, j - x  X i ,  j+l - xi*J 
A t  

- 
i, 

2ay 2c 

T i ,  j+l 
T i ,  J b + c  

I *i, j+l - Ti,J 
Ti, j - A t  

A x = x  
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13-61] 

and 

X - x  n+1., j n-1, j 
+ rojI2 (Cxn, j - 2 AY 

; i = l Y 2 , . . .  [3.62] 

Since a t  any given t i m e  j the  temperature and composition 

p r o f i l e s  i n  the  gaseous f i l m  are known, the temperatwe and 

composition changes a t  l o c a t i o n  i (i # 0) from Ti, , t o  Ti, j+l 

re spec t ive ly ,  may be readily found i, j+lJ to x 
i, J 

and from x 

by so lv ing  s imultaneously Equations C3.571 and 13.581. 

The s t a b i l i t y  c r i t e r i o n  f o r  the above d i f f e r e n c e  equat ions  

i s  d iscussed  later.  

Because temperature and composition g r a d i e n t s  a t  the  

droplet  su r f ace  are very  large, the  r e s u l t s  are markedly 

affected by using d i f f e r e n t  f i n i t e - d i  f f erence r e l a t i o n s h i p s  

t o  eva lua te  these d e r i v a t i v e s  there, w i t h  the  same space 



7 2  

increment s i z e .  Among var ious  formulas, g r a d i e n t s  a t  the  

d r o p l e t  su r f ace  were best approximated by a s ix -po in t  

u g r a n g e  p o i y n o m i a ~ . ~ ~ ,  as i n  

5 

L u  1 
ay au I y=o = m m , J  

m=O 

where Lo = -274, L1 = 600, L2 = -600, L3 = 400, L4 = -Ifso, 
and L5 = 24. 

The partial d e r i v a t i v e s  of the  thermodynamic and t r a n s -  

p o r t  p r o p e r t i e s  which appear i n  t h e  equat ions  of change were 

determined by using forward d i f f e rences .  

Since the  ambient condi t ions  are approached asymptot ical ly ,  

the numerical i n t e g r a t i o n  was c a r r i e d  ou t  t o  a c e r t a i n  radial 

d i s t a n c e  where the  p r o f i l e s  d id  n o t  change appreciably.  A t  

t h i s  po in t ,  of the o rde r  of t e n  i n i t i a l  d r o p l e t  radii ,  the 

following quasi-s teady asymptotic equat ions were used: 

= o  Y E Y *  
dCT 2 dT 

and 

= o  Y R Y *  d2iA 2 &A a $ + -  y+r0 dy 

c3.64) 

13.653 

N 

where T and are used t o  i n d i c a t e  t h a t  t h e y  hold only  f o r  

y L y*. 

s teady  equations. may be deduced from r3.291 and [3.30]. Since 

The assumptions involved i n  these simplified quas i -  
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most of the  non-Ideal and v a r i a b l e  p r o p e r t i e s  effects  occur 

i n  t h e  v i c i n i t y  of the d r o p l e t  sur face ,  and the v e l o c i t y  of 

the mix ture  3.3 i n v e r s e l y  p ropor t iona l  t o  t h e  square of t h e  

radial d i s t ance ,  the approximation i n  matching the temperature 

and composition p r o f i l e s  i s  numerical ly  j u s t i f i a b l e .  One 

commonly used approximation t o  determine numerical ly  the 

boundary condi t ions  near  the edge of t h e  boundary layers i s  

t o  f i x  i n  time the  p r o f i l e s  there. However, t h i s  approach 

was discarded,  f o r  i t  a f f e c t s  t h e  shape of t h e  p r o f i l e s  due 

t o  the continuous v a r i a t i o n  of the boundary l a y e r  thicknesses .  

I n  o rde r  t o  test the  e n t i r e  numerical  technique, the 

temperature response of a carbon dioxide,  1000-micron-radius, 

porous sphere vaporizing i n  n i t rogen  a t  8 1 5 O K  and 72.9 

atmospheres was c a l c u l a t e d  using d i f f e r e n t  mesh s i z e s .  Since 

the s t eady  state temperatures presented i n  the previous sec-  

t i o n  were obtained w i t h  a more accu ra t e  numerical technique 

which eva lua te s  the func t ions  a t  in te rmedia te  p o s i t i o n s  w i t h -  

i n  a space increment, a comparison can be made t o  assess the  

accuracy of the r e s u l t s .  The s t eady  state temperature pre- 

d i c t e d  w i t h  a space increment of 0.4ro was found t o  be 280°K, 

whereas for  a 0.2ro increment t h e  s t eady  state temperature was 

found t o  be 277'K. 

a space increment of O . O P j r o  near  the d r o p l e t  su r f ace  show a 

s t eady  state temperature of 275'K. Thus, t h e  larger the mesh 

s i z e  t h e  larger the e r r o r  introduced i n  the c a l c u l a t i o n s ,  and 

Previous s teady  s ta te  c a l c u l a t i o n s  wi th  
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as a consequence of t h i s  error, t he  computations tend t o  

p r e d i c t  c o n s i s t e n t l y  hig energy rates in 

The discrepancy i n  the r e s u l t s  i s  p r i m a r i l y  

i n a b i l i t y  of t h e  f i n i t e - d i f f e r e n c e  equat ions w i t h  r e l a t i v e l y  

large mesh sizes t o  p o r t r a y  a c c u r a t e l y  t h e  large temperature 

and composition g r a d i e n t s  a t  t h e  d r o p l e t  sur face .  Unfortun- 

a t e l y ,  the numerical technique does n o t  a l low one t o  a l te r  t h e  

space increment s i z e  during the i n t e g r a t i o n ,  and the  comput- 

i n g  t i m e  using uniform small mesh s i z e s  i s  p r o h i b i t i v e l y  long 

due t o  the  enormous amount of c a l c u l a t i o n s .  The technique is 

numerical ly  stable i f  F o u r i e r ' s  modulus, based on the d i f fe r -  

ence values  of t i m e  and space a t  the  ambient condi t ions ,  i s  

equal  t o  o r  less than 0.5. Although no formal mathematical 

proof i s  given, v i o l a t i o n  of the  above r u l e  leads t o  i n s t a -  

b i l i t y .  A simple phys ica l  argument on s t a b i l i t y  c r i t e r i a  i s  

given i n  Reference 1. 

Under those condi t ions  where there i s  no thermodynamic 

equi l ibr ium between phases i n  a b ina ry  system, t h e  mole f r a c -  

t i o n  a t  t h e  d r o p l e t  su r f ace  may be computed v i a  an o v e r a l l  

conservat ion equat ion i n  t he  system as[ 3.451. However, s i n c e  

t h e  mathematical process  t o  compute the mole f r a c t i o n  i s  a n  

i t e r a t i v e  one, the technique i s  t i m e  conswning. Thus, the  

fol lowing scheme was used. I n  o rde r  t o  determine t h e  mole 

f r a c t i o n  a t  t h e  d r o p l e t  su r f ace  a t  t i m e  j+1, a r e l a t i o n s h i p  

ought a t  t i m e  j between a change i n  t he  mole f r a c t i o n  a t  
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the  surface,  

n 

i t  i s  observed tha t  t 

t o  6x at  a given t i m e  j, Hence, when 6 m  = -wAt,  6x = 

- x ). I n  equat ion form (xo, j+l ' J  j 

-5m = w A t  = b 1 (x 0, j+l - xoJ j) + b2 [3*66]  

where bl and b2 are determined a t  t i m e  j. Since Equation [3.66] 

i s  a n  approximation, f o r  on ly  the  mole f r a c t i o n  a t  the d rop le t  

su r f ace  i s  changed, t h e  accuracy of the  technique was always 

monitored through Equation [3.45]. 

Applicat ions t o  a C02-N2 System 

Vaporizat ion h i s t o r i e s  were ca l cu la t ed  f o r  carbon dioxide 

(component A )  d r o p l e t s  vaporizing i n  n i t rogen  (component B) 

under c r i t i c a l  and s u p e r c r i t i c a l  p ressure  condi t ions.  The 

c r i t i c a l  temperature of pure C02 i s  304.2°K and i t s  c r i t i c a l  

p ressure  72.9 atmospheres. 

Figure 3.3 i l l u s t r a t e s  the vaporizat ion history f o r  a 

-micron i n i t i  

72.9 atmospheres ( PcA). This 

u n t i l  80 percent  of the  d rop le t  

ved that the  d r o p l e t  t e m -  

s i n i t i a l  temperature t o  approach 

asymptot ica l ly  i t s  corresponding steady state temperature 
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which i s  s l i g h t l y  higher than the corresponding temperature 

computed without i nc lus ion  of the d rop le t  sur face  regress ion .  

It i s  a l s o  observed tha t  most of the d r o p l e t ' s  lifetime is  

spent  i n  t h e  heating-up per iod.  

i nc reases  f o r  a s h o r t  t i m e  af ter  the i n i t i a 1 , c o n d i t i o n s  due 

t o  the thermal expansion of the l i qu id ,  s ince  most of the 

The d r o p l e t  r ad ius  i n i t i a l l y  

energy a r r i v i n g  a t  the  d r o p l e t  su r f ace  i s  u t i l i z e d  t o  heat-up 

t h e  d rop le t .  The i n i t i a l  s lope  of t he  percent-mass-vaporized 

curve i s  i n i t i a l l y  small, forming 8n i n f l e c t i o n  poin t  t he re -  

a f t e r .  The small i n i t i a l  s lope  reflects t h e  f a c t  t ha t  the  

mass vaporizat ion rates are r e l a t i v e l y  small i n  the  e a r l y  

part of the vaporizat ion process .  However, the  i n i t i a l  value 

f o r  the  mass vaporizat ion rate, a t  t = 0, not  only depends 

upon t h e  i n i t i a l  d r o p l e t  temperature, which p a r t i a l l y  f i x e s  

the  p o t e n t i a l  f o r  mass transfer, but  a l s o  depends upon the 

ambient temperature, f o r  the  same pressure  condi t ions,  i .e . ,  

the  higher the  ambient temperature, t h e  higher the i n i t i a l  

vaporizat ion ra te ,  for  t h e  same l i q u i d  temperature and pres- 

sure .  Thus, the excess  energy a r r i v i n g  a t  t h e  droplet  surface, 

s i n c e  the  droplet i s  not  under s teady  s ta te  condi t ions  for 

that value of ambient temperature, i s  no t  t o t a l l y  used f o r  

hea t ing  up, but  i t  i s  a l s o  used t o  i n c r e a s e  the rate of vapor- 

i z a t i o n .  Hence, t he  i n i t i a l  value f o r  the vaporizat ion rate 

i s  s u b s t a n t i a l l y  larger had the d rop le t  been under s teady  

s t a t e  condi t ions  a t  the i n i t i a l  l iqu id  temperature, e.g., 

f o r  t h i s  p a r t i c u l a r  h i s to ry ,  t h e  i n i t i a l  vaporizat ion rate 
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i s  higher than the corresponding s teady  state vaporizat ion 

rate a t  the  i n i t i a l  d rop le t  temperature by a f a c t o r  of 2. 

T h i s  c l e a r l y  po in t s  ou t  t h e  importance of' the coupl ing between 

heat and mass t r a n s f e r  phenomena, as well as the  s e n s i t i v i t y  

of the  vapor iza t ion  rates. The s lope  i n  the percent-mass- 

vaporized curve i s  a l s o  small a t  the end of the vaporizat ion 

process because of the decrease i n  the su r face  area. Ins t an -  

I 

taneous vaporizat ion rates as w e l l  as the v a r i a t i o n  of t he  

sur face  regress ion  rate w i t h  t i m e  for the same C02 drop le t  

are shown i n  Figure 3.4. The mass vaporizat ion rate i n c r e a s e s  

af ter  the i n i t i a l  condi t ions because of t he  rapid inc rease  

i n  t h e  d r o p l e t  temperature, reaches a maximum which i s  sub- 

s t a n t i a l l y  higher  than the i n i t i a l  va lue , to  decrease there- 

after. S imi la r ly ,  i t  i s  observed t h a t  t he  rate of surface 

regress ion  i s  p o s i t i v e  f o r  a s h o r t  per iod  of time due t o  ther- 

mal expansion of t h e  l i qu id ,  then becomes g radua l ly  negat ive 

f o r  some t i m e  and grows progress ive ly  more negat ive (not  

completely no t i ceab le  i n  t h i s  Figure)  tending toward an 

i n f i n i t e  value a t  the  end of the vapor iza t ion  process  because 

of t h e  decrease i n  the sur face  area. 

Figure 3.5 shows a complete vaporizat ion h i s t o r y  f o r  a 

carbon dioxide drople t ,  of 1000-micron i n i t i a l  rad ius ,  

0.8TcA i n i t i a l  temperature, vaporizing i n  n i t rogen  under con- 

s t a n t  ambient condi t ions  of' 815OK and 72.9 atmospheres 

( P C A ) .  The only  d i f f e rence  between t h i s  h i s t o r y  and the  
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preceding one i s  t h a t  the ambient n i t rogen  temperature i s  

lower i n  this case.  Thus, fo r  t h e  condi t ions  i l l u s t r a t e d  i n  

Figure 3.5, the d r o p l e t  i s  closer t o  i t s  steady s ta te  a t  all 

times, and the l i qu id  temperature does no t  r i s e  very rapidly 

a f t e r  the i n i t i a l  condi t ions,  f o r  most of the energy conducted 

t o  the d r o p l e t  i s  u t i l i z e d  t o  evaporate the  l i q u i d .  The drop- 

l e t  approaches asymptot ica l ly  its s teady  s ta te  temperature 

up t o  a p o i n t  where t h e  surface-to-volume r a t i o  becomes 

apprec iab le .  A t  t h i s  i n f l e c t i o n  poin t ,  t he  l i q u i d  temperature 

i n c r e a s e s  u n t i l  the vapor iza t ion  process  i s  completed, w i t h  

the temperature i n c r e a s e  being markedly r a p i d  a t  t h e  end of 

t h e  d r o p l e t ' s  l ifetime. The r a d i u s  does n o t  e x h i b i t  any i n -  

c r ease  due t o  thermal expansion i n  the  e a r l y  p a r t  of the 

vapor iza t ion  process,  even though the l i q u i d  temperature i s  

t h e  same as i n  F igure  3 . 3 ,  f o r  t h e  same reasons o u t l i n e d  above. 

After approximately the  f i rs t  1/4 of  the  d r o p l e t t s  lifetime, 

t h e  r a d i u s  approaches asymptot ica l ly  a r e l a t i o n s h i p  of t he  

form 

2 which i s  close t o  ro . 
Figure 3.6 shows the corresponding ins tan taneous  values  

for the  mass vapor iza t ion  rate and change of d r o p l e t  r a d i u s  

wi th  t i m e .  The i n i t i a l  value for the  rate of vapor iza t ion  

i s  lower than the corresponding value given i n  Figure 3.4, 
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f o r  t h e  same i n i t i a l  l i q u i d  temperature. Furthermore, i t  i s  

not iced  that the mass vapor iza t ion  rate i n c r e a s e s  from its 

i n i t i a l  value and reaches a maximum which i s  cons iderably  lower 

than t h e  one shown i n  Figure 3.4, t o  decrease  thereafter. 

Thus, the c l o s e r  the  i n i t i a l  d r o p l e t  temperature t o  t h e  

s teady  state temperature, the less pronounced the  maximum 

i n  the  vapor iza t ion  ra te  curve. Under s t eady  state condi- 

t i o n s ,  the rate of vapor iza t ion  decreases  monotonically 

w i t h  t i m e .  The ins tan taneous  values  f o r  t h e  mass vapor iza t ion  

rate were found t o  approach asymptot ica l ly  a r e l a t i o n s h i p  of 

t h e  form 

13.681 

1.0 which i s  c l o s e  t o  t h e  prev ious ly  determined value of ro . 
The rate of change of d r o p l e t  r a d i u s  w i t h  t i m e  becomes pro- 

g r e s s i v e l y  negative,  changes curva ture  as the  r a d i u s  decreases ,  

and approaches asymptot ica l ly  an i n f i n i t e  value a t  the  end of 

the  d r o p l e t ’ s  lifetime because of t he  decrease i n  su r face  

area. Reference 26 r e p o r t s  a similar c a l c u l a t e d  behavior i n  

t h e  rate of change of r a d i u s  w i t h  t i m e  f o r  50/50 Aerozine 

d r o p l e t s  i n  t h e  combustion chamber of a rocke t  motor. 

F igure  3.7 shows g r a p h i c a l l y  t h e  v a r i a t i o n  wi th  t i m e  of 

t h e  heat t r a n s f e r  by conduction a t  t h e  droplet  surface.  The 

evolu t ion  with t i m e  of the  one-dimensional composition and 

temperature p r o f i l e s  i n  t h e  f i l m  i s  shown i n  Figures  3.8 and 

3.9 r e spec t ive ly .  Thermal and concent ra t ion  boundary l a y e r  
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th icknesses  increase w i t h  t i m e  first and then decrease.  

Temperature and composition gradients a t  the d r o p l e t  su r f ace  

are of  t h e  o rde r  of 103-104 OK/cm. and 10 

cm., r e spec t ive ly .  

1 g-mole A/g-mole 

Thus far only ambient cond i t ions  where s teady  s ta te  

s o l u t i o n s  e x i s t  (Figure 2.13) have been considered. Super- 

c r i t i c a l  p ressure  cond i t ions  where a d r o p l e t  may approach or 

exceed i t s  thermodynamic cr i 'z ical  temperature by an unsteady 

process  w i l l  be considered next .  

Figures  3.10, 3.11, and 3.12 show t h e  vapor iza t ion  h i s -  

t o r y  f o r  a carbon d ioxide  d rop le t ,  of 1000-micron i n i t i a l  

rad ius ,  0.9 TcA i n i t i a l  temperature, vaporizing i n  n i t rogen  

under cons tan t  ambient condi t ions  of 1184'K and 112 atmos- 

pheres (1. 53Pc,). 

a carbon dioxide d r o p l e t  vaporizing i n  n i t rogen  cont inuously 

For these s u p e r c r i t i c a l  p ressure  condi t ions  

heats up from i t s  i n i t i a l  condi t ions  u n t i l  disappearance, 

c ros s ing  i n  the process  a c r i t i c a l  mixing p o i n t  when the  

l i q u i d  temperature i s  equal  t o  0.g5TcA, namely po in t  D i n  

Figure 2.2. The vapor iza t ion  h i s t o r y  i s  c a r r i e d  ou t  i n  t i m e  

u n t i l  t h e  d r o p l e t  has s l i g h t l y  exceeded its thermodynamic 

c r i t i c a l  temperature. It i s  observed from Figure 3.10 t ha t  

the d r o p l e t  reaches i t s  c r i t i c a l  temperature very r a p i d l y  

w i t h  l i t t l e  vapor iza t ion  t ak ing  place, thus  becoming a dense 

mass of vapor. Therefore, t he  underlying assumption i n  

S p a l d i n g f s  po in t  source theory  and Rosner's d i s t r i b u t e d  source 
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theory,  L e . ,  that  the d r o p l e t  r a p i d l y  becomes a dense vapor, 

i s  understood by tak ing  i n t o  cons ide ra t ion  t h e  high tempera- 

t u r e s  p r e v a i l i n g  i n  the combustion chamber of a rocke t  motor. 

No no t i ceab le  e f f e c t  i s  exh ib i t ed  by t h e  l i q u i d  temperature, 

which v a r i e s  almost l i n e a r l y  i n  the  reg ion  of t h e  c r i t i c a l  

temperature, as t h e  d r o p l e t  c ros ses  c r i t i c a l  mixing po in t  D. 

Although t h e  percent-mass-vaporized and d r o p l e t  r a d i u s  curves  

e x h i b i t  e s s e n t i a l l y  t h e  same behavior as i n  t h e  previous 

h i s t o r i e s  shown, the i r  corresponding ins tan taneous  values  f o r  

the  rate of vapor iza t ion  and ra te  of change of r a d i u s  w i t h  t i m 4  

do e x h i b i t  a d i s c o n t i n u i t y  a t  t he  c r i t i c a l  mixing poin t .  For 

these p a r t i c u l a r  ambient and i n i t i a l  condi t ions,  t h e  ra te  of 

vapor iza t ion  i n c r e a s e s  from i t s  i n i t i a l  value u n t i l  the  c r i t i -  

c a l  mixing po in t  i s  reached, decreasing thereafter by a d i f f e r -  

e n t  unsteady mechanism. The d r o p l e t  r a d i u s  does no t  e x h i b i t  

any observable thermal expansion I n  t h e  e a r l y  part of the 

vapor iza t ion  process.  The rate of change of d r o p l e t  r a d i u s  

with t i m e  shows a d i s c o n t i n u i t y  a t  t h e  c r i t i c a l  mixing point ,  

r e f l e c t i n g  t h e  one i n  the mass vapor iza t ion  rate. 

Figure 3.13 i l l u s t r a t e s  the  vapor iza t ion  h i s t o r y  f o r  a 

carbon dioxide droplet, of 1000-micron i n i t i a l  rad ius ,  O.8TcA 

i n i t i a l  temperature, vaporizing i n  n i t rogen  under cons tan t  

ambient condi t ions  of 646'K, and 112 atmospheres { 1. 53PC,). 

As i n  the previous h i s t o r y  the  d r o p l e t  c r o s s e s  c r i t i c a l  mix- 

i n g  poin t  D during the  vapor iza t ion  process.  The h i s t o r y  i s  
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carried out in time until the critical 

has been vaporized. 

perature conditions most of the droplet's life 

in subcritical temperature slates. Surface-to-volume effects 

are observed in the temperature response during the latter 

part of the vaporization process. Instantaneous values for 

the rate of vaporization and rate of change of droplet radius 

with time are shown in Figure 3.14. Since the critical 

mixing point, D, is crossed after the mass vaporization rate 

has reached its maximum, the discontinuity in the rate of 

vaporization is barely observable. 

uities in the rate of vaporization and rate of change of 

droplet radius with time cannot be detected through the 

data of Figure 3.13. 

Both of these discontin- 

A supercritical vaporization history, where steady 

state conditions exist and the droplet does not cross any 

critical mixing point during its vaporization, is shown 

in Figure 3.15 for a carbon dioxide droplet, of 1000-micron 

initial radius, 0.8TcA initial temperature, vaporizing in 

nitrogen under const conditions of 374OK, and 

112 heres (1.53 erved that the vapori- 

zation process is si e depicted in Figure 3.5 

where the initial droplet conditions are close to steady 

state. T hes its te condi- 

tions. The rate of convergence in the temperature response 
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i s  very slow wi th  a maximum value i n  t h e  rate of change of 

l i q u i d  temperature with t i m e  equal  t o  O . S O K / s e c . ,  r e f l e c t i n g  

t h e  fact  t h a t  m o s t  of t h e  energy conducted t o  the  d r o p l e t  

i s  u t i l i z e d  t o  evaporate  t h e  l i q u i d ,  From Figure 3.16 it 

i s  noted t h a t  t h e  rate of s u r f a c e  r eg res s ion  i s  negat ive 

during t h e  e n t i r e  vapor iza t ion  process.  

It  is  observed from Figures 3 .11 ,  3 . 1 2 ,  and 3.14 t h a t  

t h e  rate of vapor iza t ion  decreases  as a c r i t i ca l  mixing poin t  

i s  crossed and t h e  rate of change of d r o p l e t  r a d i u s  w i t h  t i m e  

e x h i b i t s  a d i scon t inu i ty .  

na t ion  cannot be given due t o  t h e  coupling between hea t  and 

mass t r a n s f e r  phenomena, t h e  mole f r a c t i o n  of carbon d ioxide  

a t  t he  d r o p l e t  su r f ace  w a s  found t o  decrease after a c r i t i ca l  

mixing poin t  w a s  crossed, t h u s  decreasing the  p o t e n t i a l  f o r  

mass t r a n s f e r .  Accordingly, t h e  thermal conduct iv i ty  and 

d e n s i t y  of t h e  C02-N2 gaseous mixture surrounding t h e  d r o p l e t  

decrease also,  modifying the  hea t  t r a n s f e r  conducted t o  

t h e  sur face .  

Although a simple phys ica l  expla- 
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Comparisons wi th  a Low Pressure Unsteady Model 

It i s  of i n t e r e s t  t o  compare t h e  foregoing unsteady 

r e s u l t s  with those p r e d i c t e d  by the low p res su re  semi- 

empir ica l  theory  of Reference 10 f o r  t h e  case  of zero  rela- 

t i v e  ve loc i ty .  The purpose of t h i s  comparison i s  th ree fo ld :  

a. Because the  semi-empirical theory  of Reference 10 

was developed f o r  d r o p l e t  vapor iza t ion  under low p res su re  

environmental condi t ions,  the  e f f e c t s  a s s o c i a t e d  w i t h  dense 

mixtures,  the  e f f e c t s  of pressure  upon the  phys ica l  proper- 

t ies ,  and the  v a r i a t i o n  of t h e  p r o p e r t i e s  through the  

vapor f i l m  are no t  taken i n t o  account. Thus, t h e  o v e r a l l  

e f f e c t  of these c o r r e c t i o n s  can be estimated by simple means. 

b. Because t h e  r e s u l t s  presented i n  t h i s  work are 

d i f f i c u l t  t o  reproduce f o r  another  b ina ry  system which may 

be of i n t e re s t ,  o r  experimental  v e r i f i c a t i o n  of the C02-N2 

r e s u l t s  may no t  be feasible, the  t r ends  p red ic t ed  by the  

above unsteady c a l c u l a t i o n s  may be compared through a t h i r d  

vapor iza t ion  theory  which i s  simple, and only  r e q u i r e s  average 

low pressure  p rope r t i e s .  

c.  The a p p l i c a b i l i t y  range of the semi-empirical theory  

can be estimated. 

Reference 10 shows i n  detai l  the d e r i v a t i o n  of the 

equat ions  involved i n  the a n a l y s i s .  Therefore,  only the  

f i n a l  expressions used i n  t h e  c a l c u l a t i o n s  are reproduced 

here f o r  convenient reference. 
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The molar vapor iza t ion  rate is  given by 

4 r r r o P D ~ ~  In P 
p-Pv 

w =  
RTav 

dc ' 2' drO - -1Tr 4 3  A 
3 0 3 7  = - 4nrocA aF- 13,701 

The ra te  of change of d r o p l e t  temperature wi th  t i m e  
2 i s  computed by t h e  fol lowing expression (T - < Tc,): 

A W  -a m c  m c' ( exp  ~a - 1 )  d PA 

wc (T, - T') dT ' PA a€= 
0 d PA 

R where 
T, + T 

= T 

I n  the c a l c u l a t i o n s  which follow, low pressure  values  

were used. these p r o p e r t i e s  were f o r  DAB, kA, %, and c 

eva lua ted  a t  the average temperature Tav. 

c' and c 

corresponding t o  T . Property c o r r e l a t i o n s  were determined 

from References 19, 23, and 31. Vaporization h i s t o r i e s  were 

computed numerical ly  be a r e c u r s i v e  formula of t h e  t h i r d  
8 ca tegory  due t o  Heun . 

PA 
Simi la r ly ,  pv, 1, 

R 
were taken a t  the pure l i q u i d  s a t u r a t i o n  condi t ions  A' PA 

R 

Before d i scuss ing  the r e s u l t s  i t  i s  of i n t e r e s t  t o  note  

t h a t ,  f o r  the  case  of s t eady  s ta te  condi t ions ,  EquationC3.711 
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reduces identically to Equatio 

of the equations of change and 

pressure properties throughout 

However, the rate of vaporization expression, c 3.691 ,does not 
reduce toll. 143. Equation [ 3-69] may be derived using the 

equations of change and assuming a constant mean value for 

the ratio (DAB/T) throughout the postulated mixture of ideal 

gases surrounding the droplet. 

As it was discussed above, the initial values for the 

rate of vaporization are largely enhanced by the ambient 

temperature through the coupling in the temperature and 

composition profiles, for the same liquid temperature. Inspec- 

tion of Equation [3.69] indicates that the initial values 

for the vaporization rate can only be enhanced through the 

ratio (DAB/T)av* 

Figures 3.17 and 3.18 show a comparison between the 

vaporization histories previously presented in Figures 3 . 3  and 

3.5 and those predicted by the low pressure semi-empirical 
theory (Equations r3.691 and [3.71]). Under these near criti- 

cal conditions the agreement between these calculated results 

is very reasonable considering the simplicity in the latter 

calculations. The percent-mass-vaporfzed curves, which are 

important in the determination of the droplet's lifetime, 

agree with no substantial difference between them. This is 

not to say that the instantaneous vaporization rates also agree 
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with  each o ther ,  as i l l u s t r a t e d  g r a p h i c a l l y  i n  Figures  3.19 

and 3.20. The i n i t i a l  va lues  for  the mass vapor iza t ion  rate 

d i f fe r  approximately by a f a c t o r  of 2, Agreement i n  vaporiza- 

t i o n  rates wi th in  approximately 20 percent  is u s u a l l y  regarded 

as q u i t e  good. 

A comparison between s u p e r c r i t i c a l  vapor iza t ion  h i s t o r i e s  

i s  shown i n  F igures  3.21 through 3.24. It i s  observed from 

Figures 3.21 and 3.22 that t h e  d r o p l e t  a l s o  reaches i t s  c r i t i -  

cal  temperature by an  unsteady process  i n  the la t te r  ca l cu la -  

t i ons ,  a l though without phys ica l  reason. A s  i t  was shown 

g r a p h i c a l l y  i n  Figure 2.14, Equations [ 3.691 through [ 3.711 

do no t  y i e l d  either steady s ta te  s o l u t i o n s  for  these p a r t i c u l a r  

n i t rogen  condi t ions,  therefore ,  the  unsteady mathematical pro- 

ces s  i s  c a r r i e d  ou t  u n t i l  t h e  c r i t i c a l  temperature i s  reached. 

I n i t i a l  values f o r  t he  mass vapor iza t ion  rate are lower in t h e  

lat ter c a l c u l a t i o n s  by a f a c t o r  greater than 2. Figures  3.23 

and 3.24 show a s u b s t a n t i a l  disagreement between c a l c u l a t e d  

r e s u l t s  under high d e n s i t y  condi t ions,  namely high pressures 

and low ambient temperatures. The d r o p l e t ' s  lifetime differs  

by a f a c t o r  of approximately 1.5 i n  t h i s  case. 

condi t ions  are important  i n  high p res su re  sprays,  as those 

High d e n s i t y  

encountered i n  ope ra t ing  diesel engines. Since the e f f e c t s  of 

to ta l  pressure on vapor pressure  and entha lpy  of vapor iza t ion  

are cons iderable  under these cond i t ions  (Figures  2.2 and 2.3), 

t h e  r e s u l t s  p red ic t ed  by t h e  simplified vapor iza t ion  theory  can 
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be g r e a t l y  improved by t ak ing  i n  

F igures  3.25 and 

r e s u l t s  a t  high 

of t o t a l  p re s su re  on vapor pressure  and enthalpy of vapori-  

za t ion .  It i s  observed t h a t  t he  agreement between vapor iza t ion  

times is  e x c e l l e n t  and the  ins tan taneous  vapor iza t ion  rates 

agree w i t h  no s u b s t a n t i a l  d i f f e r e n c e  between them. 

vapor iza t ion  times under high d e n s i t y  condi t ions  may be es t i -  

mated by t h e  simple theory  of Reference 10 provided t h e  vapor 

pressure  and en tha lpy  of vapor iza t ion  are proper ly  cor rec ted .  

Unfortunately,  the s implif ied theory  ceases  t o  be u s e f u l  as 

soon as t h e  c r i t i c a l  mixing l i n e  i s  reached. 

Therefore, 
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Concluding Remarks 

The fol lowing conclusions may be drawn 

unsteady a n a l y s i s :  

i. The unsteady heating-up per iod  i s  most important i n  

the vapor iza t ion  process  of s i n g l e  d r o p l e t s  under 

high pressure  environmental condi t ions .  Its impor- 

tance may be estimated q u a l i t a t i v e l y  i f  one cons iders  

t h a t  the  t i m e  r equ i r ed  by a s o l i d  sphere t o  reach 

a steady state temperature i s  related t o  t h e  thermal 

d i f f u s i v i t y  by F o u r i e r ' s  modulus, i .e. ,  t = ro/a . 
Furthermore, making use of  Equations [2. 241 and [2.25] 

2 

i t  i s  observed t h a t  t h e  r a t io  of heating-up t o  s t eady  

state per iods  is d i r e c t l y  p ropor t iona l  t o  the  r a t i o  

(cpA/k)'. 

thermal conduc t iv i ty  of a pure substance i n c r e a s e  

Although the  s p e c i f i c  heat as w e l l  as the  

ii. 

wi th  pressure,  the  s p e c i f i c  heat i n c r e a s e s  much faster 
i n  t h e  c r i t i c a l  reg ion  than the thermal conduc t iv i ty  25 I 

Hence, the unsteady heating-up per iod i s  most important 

a t  high pressuces.  

A vaporizing d r o p l e t  can indeed reach  and exceed i t s  

thermodynamic c r i t i c a l  temperature, thus  becoming a 

dense mass of vapor, a t  s u p e r c r i t i c a l  pressures by an 

i n t r i n s i c a l l y  unsteady process.  Under high enough 

ambient temperatures and a s u p e r c r i t i c a l  pressure,  

a d r o p l e t  reaches very rapidly i t s  c r i t i c a l  temperature. 
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iii. I n i t i a l  values  f o r  the mass vaporizat ion rate are 

l a r g e l y  enhan as the amb 

f o r  t h e  .same i n i t i a l  d r o p l e t  condi t ions.  

i v .  Inc lus ion  of the e f f e c t s  a s soc ia t ed  wi th  dense mix- 

t u re s ,  the  e f f e c t  of t o t a l  p ressure  on vapor pressure 

and en tha lpy  of vaporizat ion,  as w e l l  as the pressure 

e f f e c t  upon the  thermophysical p roper t ies ,  cannot be 

d is regarded  i n  high pressure vaporizat ion analyses .  

v. Large d e n s i t y  v a r i a t i o n s  are exhib i ted  i n  a small 

radial d i s t ance  surrounding a vaporizing droplet .  

Temperature and composition g r a d i e n t s  a t  the  d rop le t  

su r f ace  are appreclable .  

v i .  S l igh t  depar tures  from the  square law dependence i n  

- the v a r i a t i o n  of the  d r o p l e t ' s  lifetime wi th  r ad ius  

were found. 

v i i .  Vaporization ttmes may be estimated by the quasi-  

s teady theory of Reference 10 over a wide range of 

temperatures and pressures ,  provided t h e  vapor pres- 

su re  and en tha lpy  of vaporizat ion are proper ly  COT- 

rected under high d e n s i t y  condi t ions.  Without correc- 

t ions ,  the  theory of the r e fe rence  p r e d i c t s  too long 

vapor iza t ion  t imes under high pressures  and low 

ambient temperature condi t ions.  

v i i i .  None of the major assumptions introduced i n  the 

ana lys i s ,  namely, e a s e n t i a l l y  i n f i n i t e  l i q u i d  ther- 

m a l  conduct ivi ty ,  a cont inua l  formation of completely 
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fresh l i q u i d  surface, and thermodynamic equi l ibr ium 

a t  t h e  d r o p l e t  i n t e r f a c e  preclude a d r o p l e t  from reach-  

i n g  i t s  c r i t i c a l  temperature under s u p e r c r i t i c a l  

p ressure  cond i t ions  by an  unsteady process. 

ix. A s  t h e  c r i t i c a l  temperature of t h e  l i q u i d  i s  approached 

the abso rp t ion  rate of n i t rogen  i n t o  ciirbon dioxide 

may become important.  Therefore, the accuracy of 

t h e  abso lu te  va lues  repor ted  may become debatable. 

However, the l i m i t i n g  case  considered is a necessary 

one for  the  absence of  d i f f u s i o n  da ta .  
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IV. UNSTEADY VAPORIZATION WITH 
PRESSURE OSCILLATIONS 

The vaporization process is recognized as a funda- 

mental factor in determining combustion instability. Nume- 

rous studies carried out in the past have indicated that 

pressure oscillations in a combustor often amplify with 

the result of engine destruction. 

Heidmann and Wieber ,13 investigated the vaporization 

process in unstable combustors with traveling transverse 

oscillations by analyzing the frequency response of the 

droplet vaporization process to oscillations in pressure 

under a wide range of conditions. They indicated that if 

the mass vaporization rate and total pressure are both 

simultaneously above or below their average values there 

is a potential for combustion instability in the overall 

dynamic analysis of a combustion system. Conversely, if 

the mass vaporization rate variation is out of phase with 

respect to the oscillation in pressure,damping is intro- 

duced into the system. 

The analysis which follows does not attempt to 

describe the entire dynamic frequency response of the drop- 

let vaporization process subjected to radial pressure 

oscillations, nor to establish a criterion for combustion 

instability. The calculations provide a measure of the 

118 
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sensitivity of the vaporization process to superimposed 

pressure oscillations as well as the driving or damping 

potential to instability as postulated above. Making use 

of the analysis the assumption of essentially infinite 

liquid thermal conductivity is evaluated by comparing the 

liquid temperature response under the assumption of finite 

thermal conductivity. Relaxation times in the gas phase 

under high density conditions are discussed. 

The basic relationships in the analysis are first 

derived for a binary system of components A-B. 

relationships are then applied to carbon dioxide droplets 

vaporizing in nitrogen under high pressure conditions with 

superimposed pressure oscillations. It is assumed that, 

for relatively small pressure oscillations, the total pres- 

sure in the system is only a function of time, and the liquid 

properties, as well as the vapor pressure and enthalpy of 

vaporization are not significantly affected by the oscilla- 

tions in pressure. Moreover, the variation in nitrogen 

temperature associated with the pressure oscillations is 

These 

assumed to be isentropic. 



1 2 0  

Theore t i ca l  Model 

Most of t h e  governing equat ions and boundary cond i t ions  

presented i n  t h e  las t  s e c t i o n  r e q u i r e  only s l i g h t  modifi- 

c a t i o n s  i n  order t o  take i n t o  account t h e  superimposed 

p res su re  o s c i l l a t i o n s  on t h e  vapor i za t ion  process .  

Equation of 

aXA 
a t  

c -  

Equation of 

aC - +  a t  

Equation of 

c o n t i n u i t y  of spec ie s  A: 

c o n t i n u i t y  of t h e  mixture: 

a 2  5 (r c V M 0 )  = 0 1 
r 

energy : 

- 1 a Z ~ T  dP - -2 ar (r k = )  + J- d t  r 

Equation of state: 

c = c(xA,P,T)  

C4.21 

C4.31 

t 4 . 4 1  

- 
The p a r t i a l  molal enthalpy of each component, HA and 

RB, t h e  thermal conduc t iv i ty  of t h e  mixture ,  k,  and t h e  
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binary diffusivity, DABS are taken as functions of tempera- 

ture, pressure, and composition. 

Introducing the transformation 

y = r - ro(t) c4.51 

and making use of the chain rule in order to take into 

account the temperature, pressure, and composition dependence 

upon the thermodynamic and transport properties, the gover- 

ning equations may be arranged in the independent variables 

y, and t. 

Thus, integrating the equation of continuity for the 

mixture : 

Y 
2 ( y  + ro) -io[,- 1 

(y + roj2c 
0 

Y 
2 ( y  + ro> 1 

( y  + ro) c 
- 

2 

0 

ac dP) dy C4.61 



1 2 2  

S imi l a r ly ,  t h e  equat ions of c o n t i n u i t y  for spec ie s  A 

and energy become, i n  t h e  independent v a r i a b l e s  y ,  and t :  

aXA 2A ' a2 

-2 - 'My) 
axA - A' - -  
a t  c4.71 

and 

+ H'dP 
dT 

- -  

where 

D' 1 + C D ~ ~ ( E ~ ~  - c I ] PB P c c  

E' 1 ak 
c c aT 

P 
- = - -  

- (l-x*) 

C4.81 

c4.91 

Cl r .103  

c4.111 

14 .121  

c4.131 

c4 .151  

C4.161 
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Under the postulated assumptions the boundary conditions 

at the droplet surface are the same as,those presented in 

the last section, namely Equations C3.431, C3.441, and 13.471. 

Ambient conditions are specified by 

XA ( - 9  t) = 0 c4.171 

and 

C4.181 

where Tm and B are respectively the average ambient tempera- 
ture and pressure. Furthermore, 

P = P + P'sin (2rrf't) c4.191 

where P' and f' are respectively the amplitude and frequency 

of the sinusoidal pressure oscillation. 

Numerical Method of Solution 

The equations of change were solved using the same 

explicit numerical technique described in the last section 

with minor modifications in order to take into account the 

additional terms which arise from the superimposed pressure 

oscillations. 

The oscillatory pressure component was initially set 

equal to zero in the unsteady vaporization process. When 

evaporation reduced the droplet radius to an arbitrary value 

or the liquid temperature reached a specified value, a 

sinusoidal oscillation in pressure of amplitude P' and 

frequency f' was imposed upon the vaporization process. 
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Applications to a C02-N2 System 

Figure 4.1 shows the response of a C 0 2  droplet vapor- 

izing in N q  at average temperature and pressure conditions 

of 374OK and 112 atm., to a sinusoidal pressure oscillation, 

4 atm. peak to peak, and with a frequency of 500 Hz. The 

pressure oscillation is imposed on the vaporization history 

of Figure 3.15 when the droplet radius has been reduced to 

6 9 7  microns. The cycle time is very small compared to the 

droplet's lifetime and the liquid temperature (256.18OK) 

is virtually unchanged throughout one oscillation. It is 

observed that the gas phase responds immediately to the chan- 

ging pressure under these high density conditions. The mass 

vaporization rate is essentially out of phase with respect 

to the pressure and/or heat waves, where the heat wave 

represents the variation in the heat transferred by conduction 

at the droplet surface. Thus, a negative response factor 
13 is obtained, where the response factor is defined by 

l/f' 

c4.201 

'0 
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where 
P - F  c4.211 

- w - w  
- Wd - 
W 

f4.221 

The response factor, N',indicates the degree of driving or 

damping to combustion instability as generally postulated 

in the dynamic analysis of a combustion system whether it 

is positive or negative, respectively. 

Figure 4.2 shows the same vaporizing droplet of Figure 

4.1 except that the frequency of the pressure oscillation is 

very low, namely 0.5 Hz. FOP this low frequency case the 

liquid temperature has enough time to respond to the imposed 

pressure oscillation, changing the vapor pressure, and a 

response factor slightly positive is obtained. 

The above results agree qualitatively with the frequency 

response analysis of Heidmann and Wieber for heptane droplets 

with superimposed transverse oscillations, viz., a positive 

response factor is obtained at low frequencies where the 

liquid temperature has enough time to respond, and a negative 

gain is obtained at high frequencies where the vaporization 

time is large compared to the oscillation period. 

Considering that the average nitrogen temperature is 

relatively low in the foregoing calculations, higher temper- 

ature conditions were analyzed maintaining the average total 

pressure at the same value, namely 112 atmospheres. 
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Figures  4.3 and 4.4 show t h e  response of a carbon d ioxide  

d r o p l e t  vapor iz ing  i n  n i t rogen  a t  average temperature  and 

p res su re  cond i t ions  of 1 1 8 4 O K  and 1 1 2  a t m . ,  t o  a s inuso ida l  

p re s su re  o s c i l l a t i o n ,  4 a t m .  peak t o  peak, and wi th  a f re-  

quency of 1 0 0 0  Hz. The o s c i l l a t i o n  i n  p re s su re  i s  imposed 

on t h e  vapor i za t ion  h i s t o r y  of  Figure 3.10 when t h e  l i q u i d  

temperature  i s  2 7 6 O K  and 2 8 7 O K ,  r e spec t ive ly .  Under these 

cond i t ions  less than  1 0  percent  of t h e  d r o p l e t  mass has been 

vaporized. 

l e t  vapor i za t ion  t i m e  and t h e  l i q u i d  temperature  remains 

v i r t u a l l y  unchanged (0.03°K/cycle) throughout one o s c i l l a t i o n .  

Contrary t o  t h e  previous low n i t rogen  temperature  cases, 

t h e  hea t  a r r i v i n g  a t  t h e  d r o p l e t  su r f ace  i s  s u b s t a n t i a l l y  

l a r g e r  i n  t h i s  case. Furthermore, t h e  m a s s  vapor i za t ion  

rate i s  e s s e n t i a l l y  i n  phase wi th  r e s p e c t  t o  t h e  p re s su re  

and/or  heat waves. Thus, a p o s i t i v e  response factor i s  

obtained.  

p re s su re  and t h e  vapor i za t ion  rate o s c i l l a t i o n s  changes 

under h igher  frequency cond i t ions ,  as one may suspec t  from 

t h e  behavior  exh ib i t ed  i n  F igures  4 . 1  and 4 . 2 ,  p r e s su re  

o s c i l l a t i o n s  wi th  f requencies  of 5000 Hz. and 1 5 0 0 0  Hz. 

were imposed upon t h e  same d r o p l e t  whose response is  i l l u s -  

trated i n  Figure 4.4.  It  i s  observed f r o m  Figures  4.5 and 

4.6 t h a t  t h e  mass vapor i za t ion  rate remains i n  phase wi th  

the pres su re  and/or heat waves even a t  these high frequen- 

cies. Therefore ,  one may discard t h e  extremely s m a l l  l i q u i d  

T h e  cyc le  t i m e  i s  very  s m a l l  compared t o  t h e  drop- 

I n  o rde r  t o  see i f  t h e  phase ang le  between t h e  
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temperature change as the cause for the vaporization rate 

variation, nevertheless small, to be in phase with the 

pressure and/or heat waves at high frequencies. 

as discussed in the last section, the initial values for 

the mass vaporization rate in the unsteady process with- 

out pressure oscillations are largely enhanced under high 

ambient temperature conditions through the coupling in the 

temperature and composition profiles, for the same liquid 

temperature. Consequently, one may conjecture that at 

high frequencies the vaporization rate is in phase with 

the pressure and/or heat waves during the early stages of 

the vaporization process provided the energy arriving at 

the droplet surface is high enough to drive the vaporization 

response in that direction. 

However, 

Figure 4.7 illustrates the response of a carbon 

dioxide droplet vaporizing in nitrogen at average tempera- 

ture and pressure conditions of 646OK and 112 atm., to a 

pressure oscillation, 4 atm. peak to peak, and with a fre- 

quency of 1000 Hz. imposed during different stages in the 

vaporization history shown in Figure 3.13. It is observed 

that the vaporization rate is in phase with the oscillation 

in pressure during the early part of the vaporization pro- 

cess and reverses its behavior as the process progresses. 

A similar response to pressure oscillations is observed 

during the early part of the vaporization process under 

average nitrogen conditions of 1400OK and 72.9 atmospheres. 
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Thus far only cases where t h e  d r o p l e t  temperature 

i s  lower than  t h e  corresponding cr i t ical  mixing temperature 

have been considered. Figure 4.8 shows t h e  response of 

a carbon dioxide d r o p l e t  vaporizing i n  n i t rogen  a t  average 

temperature and p res su re  cond i t ions  of 1184 O K  and 1 1 2  

a t m . ,  t o  a pressure  o s c i l l a t i o n ,  4 a t m .  peak t o  peak, 

and w i t h  a frequency of 1000 Hz. The o s c i l l a t i o n  i n  pressure  

i s  imposed on t h e  vapor i za t ion  h i s t o r y  of F i g .  3.10 when 

t h e  d r o p l e t  temperature i s  s l i g h t l y  h ighe r  t han  the 

c r i t i ca l  mixing temperature fo r  t h i s  p a r t i c u l a r  va lue  of 

average t o t a l  pressure.  It is  observed t h a t  the vapori-  

z a t i o n  ra te  tends  t o  inc rease  more r a p i d l y  i n  t h i s  case 

(approximately 0 . 1  percent  pe r  cyc le )  than  i n  t h e  pre- 

vious ones considered. 

I n  o rde r  t o  observe t h e  o v e r a l l  effect of t h e  

pressure  o s c i l l a t i o n s  upon t h e  e n t i r e  vapor i za t ion  process  

inc luding  s u p e r c r i t i c a l  mixing cond i t ions ,  p re s su re  oscil- 

l a t i o n s ,  4 a t m .  peak t o  peak, and with a frequency of 

1 0 0 0  Hz. were imposed on a carbon d iox ide  d r o p l e t  of 15- 

micron i n i t i a l  r a d i u s  and i n i t i a l  temperature of 0.8TcA, 

vaporizing i n  n i t rogen  a t  average temperature  and pressure  

cond i t ions  of 646 O K  and 1 1 2  atmospheres. These vapori-  

z a t i o n  cond i t ions  are similar t o  those  of Fig. 3.13. It 

is  observed from Figs.  4.9 and 4.10 t h a t  t h e  o v e r a l l  effect 

of these r e l a t i v e l y  s m a l l  amplitude p res su re  o s c i l l a t i o n s  

(of t h e  order of 2 percent  of t h e  t o t a l  p re s su re )  on t h e  
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entire vaporization process is negligibly small and the 

physical significance of the above response factors is 

uncertain under these conditions. Unfortunately, in order 

to analyze the overall effects of large pressure oscilla- 

tions, the momentum equation would have to be included 

as well as the variations in the liquid properties, com- 

plicating enormously the analysis and thus making the 

computing time prohibitively longer. Nevertheless, the 

foregoing results indicate that the relaxation times in 

the gas phase are very short under high density conditions, 

a major concern in quasi-steady analyses. 

In order to evaluate the assumption of essentially 

infinite liquid thermal conductivity in the above calcu- 

lations, where the liquid temperature remains virtually 

unchanged throughout one cycle under high density conditions, 

the limiting case of a solid sphere, treated as a semi- 

infinite body, of finite thermal conductivity and subjected 

to a periodic surface heat flux oscillation is now con- 

sidered. 

It can be shown that the steady periodic tempera- 

ture distribution, T(Z,t), in a semi-infinite body sub- 

jected to a periodic surface heat flux Q = Q'.sin(2nf't), 

and with an initial temperature, say zero, is given by 

T(Z,t) = 'exp(-ZN) 2kN [sin(2rrf't - ZN) - cos(2rrf't - ZN)] , 
z > - 0 C4.231 
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where 
N = (Trf'cC /k) 1/2 

P 

Thus, the magnitude of the maximum temperature 

change at the surface is 

c4.243 

c4.253 

For the liquid and heat flux conditions illustrated 

in Fig, 4.1 the maximum droplet temperature change is 

found to be approximately 0.005 OK, making the assumption 

of essentially infinite liquid thermal conductivity 

unimportant. 
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Figure 4.5. Effect of frequency upon the mass vaporization 
rate. 
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ditions equal to those of Fig. 4.5. 
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droplet with and without pressure oscillations, 
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Figure 4.10, Droplet temperature response with and with- 
out pressure oscillations, Vaporization conditions equal 
to those of Fig. 4.9. 



V. CONCLUSIONS 

T h i s  i n v e s t i g a t i o n  has shown that a t  s u p e r c r i t i c a l  

p re s su res  a d r o p l e t  may reach  and exceed i t s  thermodynamic 

c r i t i c a l  temperature, thus  becoming a dense mass of vapor, 

by an i n t r i n s i c a l l y  unsteady process .  Under s u p e r c r i t i c a l  

p ressure  and high ambient temperature condi t ions ,  such as 

those encountered i n  the  combustion chamber of a rocke t  motor, 

a l i q u i d  d r o p l e t  r a p i d l y  reaches i t s  c r i t i c a l  temperature 

w i t h  l i t t l e  vapor iza t ion  t ak ing  place.  On the o t h e r  hand, 

under s u p e r c r i t i c a l  p ressure  and low o r  moderate ambient 

temperature condi t ions ,  such as those of high p res su re  sprays  

encountered i n  diesel  engines, a l i q u i d  d r o p l e t  may pass 

through the  c r i t i c a l  mixing l i n e  but  i t  may n o t  reach i t s  

thermodynamic c r i t i c a l  temperature.  

It: has been shown that f o r  a given value of ambfent 

temperature there i s  an upper l i m i t  i n  the t o t a l  p ressure  

of the system above which s t eady  state cond i t ions  cannot be 

obtained i n  t h e  vapor iza t ion  process.  Furthermore, a t  high 

p res su res  most of the d r o p l e t ' s  lifetime is  spent  under 

unsteady condi t ions .  

The non-ideal e f f e c t s  a s s o c i a t e d  w i t h  dense mixtures,  

h i t h e r t o  neglected,  cannot be ignored i n  vapor iza t ion  

ana lyses  a t  high ambient pressures .  The e f fec t  of the i n e r t  

gas p res su re  on the vapor pressure is apprec iab le  a t  high 

141 
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pres su res  and t h e  en tha lpy  of vapor iza t ion  is’ d r a s t i c a l l y  

modified. 

High d e n s i t y  g r a d i e n t s  are exh ib i t ed  i n  t h e  v i c i n i t y  

of t he  vaporizing d rop le t .  S imi la r ly ,  temperature and 

composition g r a d i e n t s  a t  the  d r o p l e t  s u r f a c e  are very large. 

The mass vapor iza t ion  rate increases w i t h  increased  

pressure  and/or ambient temperature. 

ra te  of vapor iza t ion  are largely enhanced by an i n c r e a s e  i n  

t h e  ambient temperature, f o r  t h e  same value of l i q u i d  

I n i t i a l  values  f o r  the 

temperature and pressure ,  

The e n t i r e  d r o p l e t  vapor iza t ion  t i m e  follows c l o s e l y  

the square law dependence on the v a r i a t i o n  of  the  d r o p l e t  

r ad ius .  

Vaporizat ion times can be p red ic t ed  with reasonable  

accuracy by t h e  quasi-s teady theory of Reference 10 over a 

wide range of temperature and pressures ,  provided t h e  vapor 

pressure  and en tha lpy  of vapor iza t ion  are proper ly  co r rec t ed  

under high d e n s i t y  condi t ions .  Without co r rec t ions ,  t h e  

theory  of Reference 10 p r e d i c t s  t oo  long vapor iza t ion  times 

under high p res su re  and low ambient temperature condi t ions .  

Conversely, i t  p r e d i c t s  s h o r t e r  vapor iza t ion  times under 

moderate p re s su res  and high ambient temperatures. 

S inusoida l  pressure o s c i l l a t i o n s  of r e l a t i v e l y  small 

amplitude have a n e g l i g i b l y  small o v e r a l l  e f f e c t  upon the 

e n t i r e  vapor iza t ion  process.  

Relaxat ion times i n  the  gas phase are very s h o r t  and 
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thus  the  gaseous phase may be t r e a t e d  by a quasi-s teady 

a n a l y s i s .  T h i s  i s  t o  s a y  t h a t  the p r o f i l e s  i n  t h e  gas phase 

accommodate very r a p i d l y  t o  a new p o s i t i o n  af ter  a d i s t u r -  

bance has been imposed. 

The theory  presented i s  limited i n  scope t o  those cases  

where g r a v i t a t i o n a l  and hydrodynamic e f f e c t s  can be neglected.  

Absorption rates of the  i n e r t  gas i n t o  the  l i q u i d  phase are 

assumed t o  be negl igible  and t h e  l i q u i d  phase i s  assumed t o  

have a uniform temperature.  The theory does not  account f o r  

any r a d i a n t  energy exchange nor chemical r e a c t i o n s  i n  the  

boundary layer .  Coupled e f f e c t s  a s s o c i a t e d  wi th  t r a n s p o r t  

processes,  i .e. ,  t h e  S o r e t  and Dufour e f f e c t s ,  are neglected.  

Although the v a l i d i t y  of t h i s  assumption may be debatab le  

due t o  the  high composition and temperature g r a d i e n t s  i n  t h e  

v i c l n i t y  of t h e  d r o p l e t  sur face ,  t h e  assumption i s  a necessary 

one because of the lack of data. 

The s t agna t ion  p o i n t  of a l i q u i d  d r o p l e t  immersed i n  a 

gas  stream con ta ins  many of t h e  f e a t u r e s  of unsteady vaporiza- 

t i o n  and thus  an  a n a l y s i s  similar t o  the  one presented here 

may be carried out .  

Although numerous r e sea rch  s t u d i e s  on the  thermodynamics 

of h igh  p re s su re  mixtures  are being conducted, most of  them 

are applicable only  t o  nonpolar mixtures  w i t h  l i t t l e  knowledge 

on the l i q u i d  phase behavior,  Therefore,  systematic  i n v e s t i -  

g a t i o n s  on a wide v a r i e t y  of mixtures, such as those encoun- 

tered i n  an ope ra t ing  engine, may g r e a t l y  enhance t h e  poss i -  
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bilities to describe a system analytically. 

Visual investigations of interfaces in transport processes 

may largely illuminate the present fundamental knowledge on 

thermodynamic equilibrium, absorption rates, and thermal 

gradients in the liquid phase. 

It is hoped that this investigation has i l lumina ted  

some of the fundamental aspects of the single droplet vapor- 

ization process at high pressures and will stimulate further 

research studies ,  so that eventually the vaporization process 

in an operating engine can be analytically simulated. 



APPENDIX A 

A. Thermodynamic P rope r t i e s  

The Redlich-Kwong equat ion  of state is  

RT a 
ToeSv(v t b) 

p = m -  CA. 11 

I n  o rde r  t o  apply Equation CA.11 t o  mixtures  s e v e r a l  

mixing r u l e s  are poss ib l e .  

I n  terms of t h e  gaseous mixture  compress ib i l i t y  f a c t o r ,  

Equation CA.11 w a s  arranged i n  t h e  fol lowing form22: 
3 

CA.21 1 A‘ h ==m -Trm 
where 

1 / 2  
2 * 5 / P  .T205)  CA.31 A = xi(0.4278Tci 

C 1  
i 

i 

h = BP/z 

CA.41 

CA.51 

Inspec t ion  of Equations CA.11 and CA.21 shows t h a t  so lv ing  

for  v or z (g iven  T,  P ,  and xi) involves  t r i a l - and-e r ro r  

ca l cu la t ions .  Hence, fo r  dsgital computer programming it 

is convenient t o  rewrite Equation CA.21 as 

z3 - z 2  + (A2 - B - B*P)Pz - A2BP2 = 0 CA.61 

1 4  5 
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The compress ib i l i t y  f a c t o r  of the  vapor phase was deter- 

mined a t  each po in t  through the  boundary l a y e r  from Equation 

[ A . 6 ]  by t h e  Newton-Raghson method. The pure component c r i t l -  

c a l  cons t an t s  were determined from Reference 23. 

The partial molal en tha lpy  of component i i n  the gaseous 

mixture was determined by t h e  fol lowing thermodynamic r e l a t i o n  

22 where, i n  t h e  gas phase 

BP 
B 

Thus, d i f f e r e n t i a t i n g  Equation [ A .  81 with r e s p e c t  t o  tempera- 

t u re ,  the fol lowing expression i s  obtained:  

z + B P  2 - B P  
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where 

From t h e  above equat ion 

l i m  P + 0 
U r n  z + 1 

[A.10] 

I n  o rde r  t o  determine the  vapor- l iquid equi l ibr ium condi- 

t i o n s  a t  the  i n t e r f a c e ,  as w e l l  as the en tha lpy  of vaporizat ion,  

Equation ( A .  11 may be arranged as 

- bRT - b 2 P )--g Pz 
(RT) 

z3 - z2 + ( 

abP2 = o  [ A . l l ]  -R3T7'5 
with  t h e  fol lowing mixing r u l e s  s l igh t ly  modified from 

Reference 7: 

a = c c XiXjaij 
i 3 

b = c Xibi 
i 

2 2.5 
a ii = 'aiR Tci /PCi  

[A .  121 

[ A .  131 

[ A .  143 



- RT /P bi - *bi ci ci 
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[ A .  161 

EA.171 

[ A . 1 8 ]  

Pure component constants were determined from References 

5 and 23. 
7 The fugacity of each component was determined by 

EA. 191 

where the molar volume was determined v i a  Equation [ A . 1 1 ] .  

The heat of vaporization was determined via Equation [ A . ? ] .  

B. Transport Properties 

Thermal Conductivity 

Painstaking experimental investigations seem to confirm 

a considerable enhancement In the thermal conductivity of 

some pure substances in the immediate vicinity of their 

thermodynamic critical point 35 . However, contrary to this 

behavior in the case of a pure substance, the thermal conduc- 

tivity of some binary mixtures in~estigated~~ does not exhibit 



149 

any pronounced anomaly near  the c r i t i c a l  mixing point .  The 

absence of t h i s  anomaly seems t o  be established. 

Very f e w  experimental  data on the thermal conduct iv i ty  

of C02-N2 mixtures a t  high pressures  are a v a i l a b l e  t o  be 

co r re l a t ed .  I n  t he  absence of t h i s  information,  t h e  thermal 

conduct iv i ty  of the gaseous mixture was ca lcu la t ed  by using 

the  S t i e l  and Thodos pure component co r re l a t ion29  t reat ing 

the  mixture as a hypothe t ica l  pure substance with pseudo- 

c r i t i c a l  p rope r t i e s :  

0 -- -a - 
(k - k )gzc= 14x10 (exp 0.535Fr - 1) , cr < 0.5 

(k - ko)gzc = 1 3 . 1 ~ 1 0 - ~ ( e x p  0.67zp - 1.069) , 
0.5 <Fr  < 2.0 f A . 2 0 1  

(k - ko)izc = 2 . 9 7 6 ~ 1 0 - ~ ( e x p  1.155Fr + 2.016) , 
< 2.8 2.0 < Zr 

[A. 211 

[A. 223 
- - 
cr  = vc/v 

The p s e u d o c r i t i c a l  cons tan ts  were determined by using 
t h e  Prausni tz  and Gunn's modified r u l e s  23. . 

- v = x v + (l 'XA)VcB 
C A cA 

- 
2 = x 2 + (l'XA)ZcB 

C A C A  
[A. 241 
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IA.261 

[A.27] 

The molar volume of the mixture was computed v i a  Equation 

[A.6]. 

low pressures i s  required.  

mole f r a c t i o n  average of the  pure component thermal conduct i -  

vities, Brokawrs method was used: 

Estimation of' t he  mixture thermal conduct iv i ty  a t  

Since it i s  n o t  i n  general a l inear 

4 

where 

kL = x A A  ko + (l-xA)$ 

l/kR = xA/k: -t (lexA) /$ 

[A. 29'1 

3 + 0 . 4 2 7 3 8 8 0 ( 1 - ~ ~ )  

= q(mo1e f r a c t l o n  of light component) f A . 3 1 1  

Pure component p r o p e r t i e s  were obta ined  from References 

19, 20, .and 23. 

a g a i n s t  one experimental  point15 a t  T = 323.2 OK, P = 81 atm., 

and xA = 0.659. Although the ca l cu la t ed  thermal conduct iv i ty  

The c o r r e l a t i o n  and its computer subrout ine were tested 
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value was found to agree within 1.5 percent o f  the experimental 

value, less accuracy may be expected i n  general under the 

conditions prevailing i n  the gaseous film surrounding the 

vaporizing droplets studied. 

Dif fus iv i ty  DAB 

Experimental data on the coefficient of binary diffusion 

f o r  high pressure mixtures are very scarce. The product D~~ 
was estimated from a corresponding-states chart for  non- 

28,30 polar substances based on self-diffusion measurements 

Accurate results are obtained at low densities.  A t  high 

dens i t i e s  the method is regarded as provisional, for very 

f e w  data are available for comparison. 



APPENDIX B 

- -  . . - - . _- - - -- - -----I- - - - - . -. -_ - ._ . _b 5 2 
A, S T E A D Y  S T A T E  V A P O R I Z A T I O N  A T  H I G H  P R E S S U R E S  

T H I S  PROGRAM COMPIJTES T E M P E R A T U R E  ANI) COMPOS I T  IC!N 

CUMPUTES I N I T I A L  C O N D I T I O N S  FOR U N S T E A D Y  V A P O R I Z A T I O N ,  

I N P U T  D A T A  
K ( 1 )  I S  T H E  DRTIPLET 

X A ( 1 )  I S  T H E  MOLE F R A C T I O N  A T  T H E  I N T E R F A C E  
I J I F H  I S  T H E  E N T H A L P Y  OF V A P O R I Z A T I O N  
P I S  T H E  T O T A L  PRESSURE 

~_I. -_ -__ -_I- .~-l- I lll.---- ---I-. -- -I __I__ . -.- 
1 I S  T H E  I , IOIJ I I I  T E r l P E R A T U R E  

Q I S  T H E  ENERGY G O I N G  I N T O  THE D R O P L E T ,  CAI,/SEC. l l N D F K  
- . I _ _  - _I _. S T E  A I I Y  - -  S TAT E GQHDIJ-E&NS.. S E T -0zQ.L F.P R I & I T 1-A L, C U 'V!)- I T I ON S 

I N  U N S T E A D Y  V A P F I K I Z A T I O N  Q I S  NUT E Q U A L  TO ZERO. 
WGM I S  A CCUSE GlJESS V A L U E  T O  T H E  V A P O R I Z A T I O N  

UELTA I S  THE S P A C E  I N C R E M E N T  Ihl N U M E R I C A L  TECHNI(31JE 
K A T E  9 G M S / S E C e  

___I_ I __ -- __ -_ . - - - - . - - - - .~ _- - I 
I )  UT P UT T ~ Z T A - -  
T E M P E R A T U R E  AND CUMPOS I T  IClN P R O F I L E S  I N  T H E  G A S  
P H A S E ,  A M B I E N T  TEMPERATURE,  A,ND K A T C  OF V A P O R I Z A T I D N .  

7 I T E R =  I T E K + 1  
K ( 1 ) =  0,l 
T ( 1 ) =  243.36 
X A ( 1 ) =  0.335 



.... - .......... -. .......... .- .. __I_ _ _  .... _________ __ .... _I_ ......... _. .__I._ . ._ ............. 15.3 .. 

. . . . . . .  - 

__ .. -. . . . .  -. .. 

. . . . . . . . . . .  - 

....... - . 

. - .. __ ....... I . 

..... . 

101 

. . . . . . .  

. .  .- 

. . . . .  

T j ' J l =  T ( N ) - j > T  ...... I . . . .  

T L =  T N 2  

. .  __ -. ...... C A L L .  WTH." .._II._-____ . __..-._.x___._ ........ - .  . . . . . . . . . . . . . . . . . . . . .  
C X 1 =  CONI- 



C T ? l =  CONI, 
H A T 2 1 =  H A L  
T I_=  T I 1 1 1  
C T 1 1 =  CUNI, 
H A T 1 1 =  H A L  
C U N T l ;  ( C T 2 1 - C T - 1 1  f/-(-Z.i%DT 
t - I A T l =  ( H A T 2 l - H A T 1 1 )  / (2.;$DT 1 
X l V 2 l =  X A l + D X  
XN 11= XA1-DX 
TL= T 1  

__ - _. . - - .- - -I .__ . 

T N 1 2 =  T2-DT 
T L =  T N 2 2  
C A L L  COND 
C A L L  E N T H  
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.. . .. __ . . . - - . _. . . 

10 E P S X A P =  E P S X A  
WGP= WGM 
WLM= WGM+T)ELW 
GLJ TiJ 7 



13 FORMAT ( l H 0 ~ 9 X t  11HTEMPERATURE, lSXt4HFLO!d)  
P R I N T  149 T I N I O t  WGFl 

14 F(1KMAT ( 1 H O t  2E20.61 
ST l lP  

T L =  T ( N )  
XL= X A ( N )  
CALL CIIND 
CON= CONI, 
Gl3 TiJ 101 

__I__ - . - 107 CONTINUE -__-_11_ _1_1------.--. -- -111- - .  - 

SUBKUUTI NE PVTX 

KEULICH-KWONG EOI IATION OF STATE 
T C A =  13?j4-.2 
TCB= 126.2  
PCA= 72.9 
P C U =  33.5 
T =  TI, 

CU MMlSN TI- t P 9 XL t CON!. 9 ZI, t HAL 
- - __ -. - _I_ - I---I^ . - . -  -- - . . . . . . . .  

XA= XL 
TRA= T/TCA 

....... ................ ................. l _ l . _ _ _ _ I  .__-_-____I__._.______-_.___..._ . . . . .  . . . . . . . . . . . . .  -. 



. - .. .- - 

K =  1 0 9 8 5 8 8  
ZCA= 0 . 2 7 4  
ZCB= 0.291 
VCA= 94-00 

- - .. V C B =  . BO,.Z- ____"  -_.__ l_.l I.__. _ _  . - 
T =  T L  
X A =  X L  
TKA= T / T C A  
TUB= T/TCt3 
V I S C I J S I T I E S  AT I,OW PRESSIJRE, P O I S E 5  



I F  (1500.  - T I  20,23123 
23  CIJIVTINUE 

CVA= 5,10709 + 15*42195€-3*T  - 9,92626E-6*T*'*2 + 
12.40272E-9*T*'z3 - K 

- . . ... - .  . -. ...... - . . . . ." 



z =  Z L  
C L I I V I P K E S S I B I L I T Y  F A C T O R  V I A  R-K EON. O F  S T A T E  
zPl= z 
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B o  U N S T E A D Y  V A P O R I Z A T I O N  A T  H I G H  P R E S S U R E S  

I N P U T  D A T A  
T A M B  I S  T H E  A M B I E N T  T E M P E R A T U R E  
P I S  T H E  T O T A L  PRESSIJRE 

I - __ - _._ --_B-._IS ..!:HE--I N I _ _ Z I A L - . D Q l W - R . . 4 U ~  ---I- - - . - -. -- - - - ~ 

T ( 1 ~ 1 1  I S  T H E  I N I T I A L  D R O P L E T  T E M P E R A T U R E  
T ( 1 ~ 1 )  I S  T H E  I N I T I A L  T E M P E R A T U R E  P R O F I L E  
X ( I T 1 1  I S  T H k  I N I T I A L  C O M P O S I T I O N ~ P K O F I I - E  
H I S  T H E  S P A C E  I N C R E M E N T  S I Z E ,  CM 
M L - 1  IS T H E  NUMBER O F  S P A C E  I N C R E M E N T S  I N  T H E  F I L M  

~ - . - - - I - 1 - S'il - . B - 4 K  1 _c _EWC T I  0 E .DE?-! !!_E D_.JELO\nl- - - 

U U T P U T  D A T A  
D R O P L E T  K A O I U S T  L I O U I D  T E M P E R A T U R E ,  PERCENT-MASS-  
V A P l _ ) l < I z E D ,  A N D  V A P O R I Z A T I O N  R A T E  A S  F U N C T I O N S  OF T IP IE .  

. .  .... _.I.._.___ . I ... .. ... ... . . . .- - . . 

T U T A L  P R E S S U R E  E Q U A L  T O  112 ATM. 

T E M P E R A T U R E  R A N G E  240-1500 K. 
V A P U  t i  I Z A T I  ON COND I T I  ONS 

DROP TEMP.  R A N G E  243-305 K o  
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P R I N T  29 TAMBTP 
2 FLJKMAT (2E20.6)  

P R I N T  5 
5 FORMAT ( ~ X T ~ H T I M E ~ ~ X T ~ H R A D I U S , ~ X ~ ~ H T ~ W P , ~ X , ~ H P E R C T ~ X T  

_ _ _ .  - . -- 14HFLOW T ~ X T ~ H E R R O R )  
__.I_ - . . .- I _- I.__ - - -_-_.I__ -- --I-.-II .- . - 

H= 0.04 
DT= 0.001 
ux= 0.001 
ML= 2 6  
STAH= 0.5 
K M I N =  0.01 
L I N t S  ARE P R I N T E D  EVERY- jNDEX--NUMBER OF T I M E  INCKF i4 tNTS 
I N D E X =  1 
KL= ML-1 
J L= ML-2 
I T N =  1 

.- . 

X I N F =  0 .  
T I i U F l =  T I N F + D T  
T L =  TIRIF 
XL= X I N F  

CALL CON0 
CALI, EMTS 
CON I N F  = CONI- 
H B I N F =  HBL 

. I- 



TL= T I N F l  
CALL PVTX 
CALL ENTH 
H B I N F l =  HBL 

ALFA= ClJNINF/ (CINF*CPBINF)  
D I F F =  CDABF ( T I  NF 1 / C I  NF 
T INE INCREMENT I S  DETERMINED 
I F  (ALFA-DIFF)  2 2 9 2 1 9 2 1  

..... --___I_ .. 2 -_ 2 .... H K = s T.&!?-?.YEU-!!LF!L. I ____I_ - ____.I_ __ - -. - I -" I - - I I . -- - I 
GiJ TtJ 2 3 

2 1  HK= STAB*H**Z/ALFA 
2 3  CONTINUE 

J= 1 
M =  J+1 

18 A I K =  I T N  - . . __ ._ 
T I M E =  ( A I K - 1 .  )$:HI( 

-. I . __ .......... 

. . . . . . .  . - . .  Ti-= TL!? .......... ........ - ........... 

C-ALL PVTX 





W GM= W XtW A 
I F  ( 1 - I N D E X )  8,798 

8 INDEX= I N D E X + l  
SUM= 0. 
SUME= 0, 
INTEGRATION THROUGH THE BOUNDARY L A Y E R  IS I N I T I A T E \ )  

L= 1-1 
A I =  I 
Y =  ( A I - 1 .  I'JH 



. . - . . . 

C T 1 =  CONL 
H A T l =  H A L  
H B T 1 =  H B L  
CC)NX= ( CX1-CON) /OX 

.. _. __ ._. _ _  . . . .. .. . .. .. 

HBX= ( H B X l - H B L 1 1 / D X  
C?A= ( H A T l - H A L 1 1  / D T  
CPB= ( H B T l - H B L l ) / D T  
C =  P/ (Z*RG'kT(  I, J )  1 

-. . 

_ _  . . - . .__. . . - ... 



1 ( 1. + 3 .  +$ ( DS W+K 1 / ( 2 g H  ) 1 
INTEGRATION THROIJGH THE BOUNDARY LAYER I S  TERMINATE0 
I F  DROPLET RADIUS IS LESS THAN RMIN THE PROCESS STOPS 
I F  (K-RMIN)  199199 17 

- __I . - __ - 17 I T N =  -__. I T N + 1  -. -I---L_ _ _ _  ~ - _ _  _ -  _-- -I--- 

Ut1 24 I ND= 1 9 M L  
TEMP= T (  I N D 9 M )  
T (  INO9 J I =  TEMP 
FKAC= X ( I N D 9 M )  
X I  I N D ,  J I =  FKAC 

2 4  CONTINUE ._. - - 
19 STOP 

._I_____ - .___"I_ I __. " _--- .- . - l_.l_.. ___I-. -__I--- - ---- ---- --- - - - - --- - -- 
GO TIJ 18 

END 



_. ~ . - - . _, -. . . .... . _____I___ I_ -. . . . __-_ ... . . . "__ . " 

NEWTUN KAPHSON METHO0 
c 3 =  1.0 
c 2 =  -1.0 
C1= P*(ASMS - R S M  - P*BSM**2 )  

ZM= Z O  
I T N =  0 

C =  B 
B= C 2  + ZM:kB 
C= B + ZM*C 
B= C 1  + ZM*R 
C =  B + ZMhkC 
B= C 0  + ZM*B 
,?NEW= Z M  - B/C 

4 2  B= C3 

-- --IIII__I.---__I___- 7_ __l____l__ ___I 

SUBKdUTINE CON0 

T =  TL  
XA= XL 
TCA= 304.2 
TCR= 126.2 
WA= 44.01 
WB= 28.016-- 
SIGA= 3.941 

- - - . -- I _ -  _ -  -_--_I-______ .̂__ -_____I- __ .I - - _ _  - . - _ _  - 

SIGB= 3.798 
TBA= 195.2 
TBB= 71.4 

ZCB= 0 .291 
VCA= 94.0 

TKA= T/TCA 
VCB= 90.1 





. . .. . __ . . .- 

z =  ZL 
C U M P g t S S I B I L I T Y  FACTOR V I A  RFK EON, OF S T A T E  
ZPl= z 
F1=  H S A / B S M  
F 2  2 M  - B S H * P )  

I___I_______ _I_ ~ -.-- ---I- - _ I  . -  
F 3  IBSM 

. ._I_ . ._ ... . . _' ... . -" . . . . 



. ___-”- 
“---I-- . 

F 3 =  ASMS/BSM 
F 4 =  2e ‘xASB/ASM 
F 5 =  l o / ( Z M  + BSM*P)  - -  
Fh= B S M * P / Z M  

. _  . I. .. .. . 





R I S  THE I N I T  

TAMB I S  THE A 
I> IS THE TOTAL PRESSURE 
DELTA I S  THE T I M E  INCREMENT I N  NUMERICAL TECHNIQUE 

. I-1x _---- L-LS- XKkLLhU-I - x---- 

- _ _  - _  - -- 
I p UT .!!&TA_ - - __ ______-__ 

PLET TEMPERATURE, RADIUS,  VAPORIZAT-I%N RATE, 
AND PERCENT-MASS-VAPORIZED AS FUNCTIONS OF T I M E  

CLI MMU N T L , P T P VL I C ONL 
" - I - _-I_- .- 0 E F  I E.. C-P__A_F 4 T D 13 - 5 a 10 70 9+ 1 5 42 1 9 5 E -3-%IB~.%-92 &!&E rr_C3 ._ 

I T 0': '6 2 + 2 a 40 2 7 2 E-9 Q T 0 * * 3 
D E F I N E  V A P F ( T U ) =  802208*(TD/lOOo-lo281)**(3o852) 
LIEF I N €  CALF ( TD ( U o 4 6 8 + 1 2 3 a 2 6 5 E - 3 *  ( TCA-TD 1 ** ( 0.39 1377 1 

1-6 16.157E-6* (  TCA-T0)+7.  0 3 0 5 4 6 E - 6 *  (TCA-TO)  * *2  1 /WA 
DEFII\JE D C A L F ( T D ) =  ( - 0 a 3 9 L 3 7 7 * 1 2 3 0 2 6 5 E - 3 / ( ( T C A - T D )  

I) E F I N E DE I- F ( TD 1 = TO*: ( 7.90*T 0 /  TC A-  7.8 2 - 7.1 1 *LOG ( V AP F ( T D 1 
_^._ - -- c. 

1 '6 _-- * 0 0 6-0.8 62-3-)+ 6 1 6 0 1-5 7 E- 6-ymL42 _06 1 0 9 2 E --6-?LI_C 4 -T 0 2- 1 /M. A I . 

1 / P C A  1 /2.30259 1 / ( 1 .07-TDITCA 1 
DEF I N E  CPI,F(TD)= (2035579-2 .56148E-2* (TD-273*15)+  
1 1 2 o 2 8 0 1 5 E ~ 5 ~ ~ ~ T D ~ 2 7 3 o l 5 ) ~ * 2 + l 7 o 3 5 l 9 5 ~ ~ 5 * ~ T ~ ~ 2 7 3 o l 5 ~  
2*+3+3?.  6 8 3 8 6 E - 7 *  ( T l ) -273.15 **4) *WA/  FAC 

. _._ - _I___-__.--. _I_.. UEF_I_NE-DABF-(JD)= 2 . 7 4 5 E ~ 4 . 5 ( T D / T C  ] -?E( . .L  8&32I;TLf?. _ I  - _ _  - - I 

THE ABOVE FCNS. D E F I N E  I D E A L  S P E C I F I C  HEAT, VAPOR 
PRESSURE, L I Q I J I D  0 I T Y T  I T S  P E K I V A T I V E T  LATENT 
HEAT, L I Q U I D  S P E C I F I C  HEAT, AND O I F F U S I V I T Y  
LIIW PRESSURE PROPEKTI  ES 
P R I N T  3 



11 
1 2  

. .. . .- . _. ..._. . 

T A V =  ( T + T A M B  1 /2. 
DAB= DABF ( T A V )  
CPA= C P A F f T A V )  
T L =  T A V  



__ . . . . . . - . .. .. . , . - 

. .. . .. 

U E N Z =  C A L F (  T 2  I 
D E N T 2 =  D C A L F l  T 2  1 

D A H 2 =  D A R F ( T A V 2 )  
C P A 2 =  C P A F (  T A V 2  1 
T L =  T A V 2  
PVL=  P V 2  

I F  T H E  R A D I U S  I S  L E S S  T H A N  100 M I C R O N S  T H E  PROCESS STOPS 
I F  ( l < - o * o l )  7 9 7 9 6  

6 GU TI_) 8 
7 STOP 



- .  _._ 

-- ... ....... 

.._-. . .... 

_ _  .. ....... ...... -l_l_-__I________._. ....... ......... .I- . . .  ,- ...... .- ._&I 5 . . _- 

TBA= 195.2 
THH= 71.4 
A =  PVL/ (2 . *P)  
T R A =  TL/TCA 

... . . . . . . . .  -. .. . . . . . . .  .________...__I__ ._.-__I.___II__I______II___.__. ..... ............. 

. .  .. _._. ......... . .__I__.._I_.I_..____.___I_.___ . .. ^.___..-.I ..-.....-.I . . . . . . . . . . . . . . . . . . . . . .  

........... ..... ... _I_ ..-_I__.___._. ... _I _I..___X_^__.__ . .. . ....... -- 

. __..___I ... ..I ._.__._l___l_l___ __ ___ - - _ _  . .  -" ........ 

. . . . . . . . . . . . . . . . . . . . . . .  ......... __I" -.._-.__.._.I__ .______II___.IÎ X___I_ ........ ..... . . . . . . . .  
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